Advertisements
Advertisements
Question
The surface area of a sphere is 2464 cm2, find its volume.
Solution
Surface area of the sphere = 2464 cm2
Let radius = r, then
4πr2 = 2464
`=> 4 xx 22/7 xx r^2 = 2464`
`=> r^2 = (2462 xx 7)/(4 xx 22) = 196`
`=>` r = 14 cm
Volume = `4/3pir^3`
∴ `4/3pir^3`
= `4/3 xx 22/7 xx 14 xx 14 xx 14`
= 11498.67 cm3
APPEARS IN
RELATED QUESTIONS
Find the surface area of a sphere of radius 14 cm.
`["Assume "pi=22/7]`
The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-plating it on the inside at the rate of ₹ 16 per 100 cm2.
`["Assume "pi=22/7]`
Find the radius of a sphere whose surface area is 154 cm2.
`["Assume "pi=22/7]`
A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate the number of cones recast.
Find the surface area of a sphere of diameter 21 cm .
A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin- plating
it on the inside at the rate of Rs. 4 per 100 `cm^2`
Eight metallic spheres; each of radius 2 mm, are melted and cast into a single sphere. Calculate the radius of the new sphere.
If the number of square centimeters on the surface of a sphere is equal to the number of cubic centimeters in its volume, what is the diameter of the sphere?
Total volume of three identical cones is the same as that of a bigger cone whose height is 9 cm and diameter 40 cm. Find the radius of the base of each smaller cone, if height of each is 108 cm.
The cross-section of a tunnel is a square of side 7 m surmounted by a semi-circle as shown in the adjoining figure. The tunnel is 80 m long.
Calculate:
- its volume,
- the surface area of the tunnel (excluding the floor) and
- its floor area.
The ratio of the total surface area of a sphere and a hemisphere of same radius is
Find the surface area and volume of sphere of the following radius. (π = 3.14 )
9 cm
If the radius of a solid hemisphere is 5 cm, then find its curved surface area and total surface area. ( π = 3.14 )
Find the length of the wire of diameter 4 m that can be drawn from a solid sphere of radius 9 m.
A solid, consisting of a right circular cone standing on a hemisphere, is placed upright, in a right circular cylinder, full of water and touches the bottom. Find the volume of water left in the cylinder, having given that the radius of the cylinder is 3 cm and its height is 6 cm; the radius of the hemisphere is 2 cm and the height of the cone is 4 cm. Give your answer to the nearest cubic centimetre.
A conical tent is to accommodate 77 persons. Each person must have 16 m3 of air to breathe. Given the radius of the tent as 7 m, find the height of the tent and also its curved surface area.
Find the volume and surface area of a sphere of diameter 21 cm.
A sphere cut out from a side of 7 cm cubes. Find the volume of this sphere?
A manufacturing company prepares spherical ball bearings, each of radius 7 mm and mass 4 gm. These ball bearings are packed into boxes. Each box can have maximum of 2156 cm3 of ball bearings. Find the:
- maximum number of ball bearings that each box can have.
- mass of each box of ball bearings in kg.
(use π = `22/7`)