English

Total volume of three identical cones is the same as that of a bigger cone whose height is 9 cm and diameter 40 cm. Find the radius of the base of each smaller cone, if height of each is 108 cm. - Mathematics

Advertisements
Advertisements

Question

Total volume of three identical cones is the same as that of a bigger cone whose height is 9 cm and diameter 40 cm. Find the radius of the base of each smaller cone, if height of each is 108 cm. 

Sum

Solution

Let the radius of the smaller cone be 'r' cm.

Volume of larger cone 

= `1/3pi xx 20^2 xx 9` 

Volume of smaller cone 

= `1/3pi xx r^2 xx 108` 

Volume of larger cone = 3 × Volume of smaller cone 

`1/3pi xx 20^2 xx 9 = 1/3pi xx r^2 xx 108 xx 3` 

`=> r^2 = (20^2 xx 9)/(108 xx 3)` 

`=> r = 20/6 = 10/3` 

shaalaa.com
  Is there an error in this question or solution?

RELATED QUESTIONS

A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-plating it on the inside at the rate of ₹ 16 per 100 cm2.

`["Assume "pi=22/7]`


The diameter of the moon is approximately one-fourth of the diameter of the earth. Find the ratio of their surface area.


A right circular cylinder just encloses a sphere of radius r (see figure). Find

  1. surface area of the sphere,
  2. curved surface area of the cylinder,
  3. ratio of the areas obtained in (i) and (ii).


A model of a ship is made to a scale 1: 300

1) The length of the model of the ship is 2 m. Calculate the lengths of the ship.

2) The area of the deck ship is 180,000 m2. Calculate the area of the deck of the model.

3) The volume of the model in 6.5 m3. Calculate the volume of the ship.


On a map drawn to a scale of 1: 50,000, a rectangular plot of land ABCD has the following dimensions. AB = 6 cm; BC = 8 cm and all angles are right angles. Find:

1) the actual length of the diagonal distance AC of the plot in km.

2) the actual area of the plot in sq. km.


The surface area of a solid metallic sphere is 2464 cm2. It is melted and recast into solid right circular cones of radius 3.5 cm and height 7 cm. Calculate:

  1. the radius of the sphere.
  2. the number of cones recast. (Take π = `22/7`)

Find the surface area of a sphere of diameter 21 cm .


A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin- plating
it on the inside at the rate of Rs. 4 per 100 `cm^2`


A wooden toy is in the form of a cone surmounted on a hemisphere. The diameter of the base
of the cone is 16 cm and its height is 15 cm. Find the cost of painting the toy at Rs. 7 per 100
`cm^2`.


A hemi-spherical dome of a building needs to be painted. If the circumference of the base of
the dome is 17.6 cm, find the cost of painting it, given the cost of painting is Rs. 5 per l00
`cm^2`


Metallic spheres of radii 6 cm, 8 cm and 10 cm respectively are melted and recasted into a single solid sphere. Taking π = 3.1, find the surface area of the solid sphere formed.


The surface area of a solid sphere is increased by 12% without changing its shape. Find the percentage increase in its:

  1. radius
  2. volume

A hollow sphere of internal and external diameter 4 cm and 8 cm respectively is melted into a cone of base diameter 8 cm. Find the height of the cone. 


A hollow sphere of internal and external radii 6 cm and 8 cm respectively is melted and recast into small cones of base radius 2 cm and height 8 cm. Find the number of cones.


A cylindrical rod whose height is 8 times of its radius is melted and recast into spherical balls of same radius. The number of balls will be


A solid metallic cylinder has a radius of 2 cm and is 45 cm tall. Find the number of metallic spheres of diameter 6 cm that can be made by recasting this cylinder . 


The volume of a sphere is 905 1/7 cm3, find its diameter.


The cylinder of radius 12 cm have filled the 20 cm with water. One piece of iron drop in the stands of water goes up 6.75 cm. Find the radius of sphere piece.


A spherical ball of radius 3 cm is melted and recast into three spherical balls. The radii of two of the balls are 1.5 cm and 2 cm. Find the diameter of the third ball.


The internal and external diameters of a hollow hemispherical vessel are 20 cm and 28 cm respectively. Find the cost to paint the vessel all over at ₹ 0.14 per cm2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×