Advertisements
Advertisements
Question
Why molecularity is applicable only for elementary reactions and order is applicable for elementary as well as complex reactions?
Solution
A complex reaction proceeds through several elementary reactions. Numbers of molecules involved in each elementary reaction may be different i.e., the molecularity of each step may be different. Therefore, discussion of molecularity of overall complex reaction is meaningless. On the other hand, order of a complex reaction is determined by the slowest step in its mechanism and is not meaningless even in the case of complex reactions.
APPEARS IN
RELATED QUESTIONS
A reaction is second order in A and first order in B.
(i) Write the differential rate equation.
(ii) How is the rate affected on increasing the concentration of A three times?
(iii) How is the rate affected when the concentrations of both A and B are doubled?
For a reaction, \[\ce{A + B -> Product}\]; the rate law is given by, `r = k[A]^(1/2)[B]^2`. What is the order of the reaction?
From the rate expression for the following reaction, determine the order of reaction and the dimension of the rate constant.
\[\ce{C2H5Cl_{(g)} -> C2H4_{(g)} + HCl_{(g)}}\] Rate = k [C2H5Cl]
How does calcination differ from roasting?
Define the following terms:
Pseudo first-order reaction
For a complex reaction:
(i) order of overall reaction is same as molecularity of the slowest step.
(ii) order of overall reaction is less than the molecularity of the slowest step.
(iii) order of overall reaction is greater than molecularity of the slowest step.
(iv) molecularity of the slowest step is never zero or non interger.
Why is the probability of reaction with molecularity higher than three very rare?
For a reaction A + B → products, the rate law is given by: r = `K[A]^(1/2)`. What is the order of reaction?
Identify the order of reaction from the following unit for its rate constant:
L mol–1s–1
Which of the following statement is true?