हिंदी

Area of a sector of central angle 200° of a circle is 770 cm2. Find the length of the corresponding arc of this sector. - Mathematics

Advertisements
Advertisements

प्रश्न

Area of a sector of central angle 200° of a circle is 770 cm2. Find the length of the corresponding arc of this sector.

योग

उत्तर

Let the radius of the sector AOBA be r.


Given that, Central angle of sector AOBA = θ = 200°

And area of the sector AOBA = 770 cm2

We know that, area of the sector = `(pi"r"^2)/360^circ xx θ^circ`

∴ Area of the sector, 770 = `(pi"r"^2)/360^circ xx 200`

⇒ `(77 xx 18)/pi` = r2

⇒ r2 = `(77 xx 18)/22 xx 7`

⇒ r2 = 9 × 49

⇒ r = 3 × 7

∴ r = 21 cm

So, radius of the sector AOBA = 21 cm.

Now, the length of the corresponding arc of this sector = Central angle × Radius  ...`[∵ θ = l/"r"]`

= `200 xx 21 xx pi/180^circ`  ...`[∵ 1^circ = pi/180^circ "R"]`

= `20/18 xx 21 xx 22/7`

= `220/3 "cm"`

= `73 1/3 "cm"`

Hence, the required length of the corresponding arc is `73 1/3 "cm"`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Area Related To Circles - Exercise 11.4 [पृष्ठ १३४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 11 Area Related To Circles
Exercise 11.4 | Q 15 | पृष्ठ १३४
आरडी शर्मा Mathematics [English] Class 10
अध्याय 13 Areas Related to Circles
Exercise 13.2 | Q 18 | पृष्ठ २५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×