हिंदी

The central angles of two sectors of circles of radii 7 cm and 21 cm are respectively 120° and 40°. Find the areas of the two sectors as well as the lengths of the corresponding arcs. - Mathematics

Advertisements
Advertisements

प्रश्न

The central angles of two sectors of circles of radii 7 cm and 21 cm are respectively 120° and 40°. Find the areas of the two sectors as well as the lengths of the corresponding arcs. What do you observe?

योग

उत्तर


Let the lengths of the corresponding arcs be l1 and l2.

Given that, radius of sector PO1QP = 7 cm

And radius of sector AO2BA = 21 cm

Central angle of the sector PO1QP (θ1) = 120°

And central angle of the sector AO2BA (θ2) = 40°

∴ Area of the sector with central angle O1

= `(pi"r"^2)/360^circ xx θ_1`

= `(pi(7)^2)/360^circ xx 120^circ`

= `22/7 xx (7 xx 7)/360^circ xx 120^circ`

= `(22 xx 7)/3`

= `154/3 "cm"^2`

And area of the sector with central angle O2

= `(pi"r"^2)/360^circ xx θ_2`

= `(pi(21)^2)/360^circ xx 40^circ`

= `22/7 xx (21 xx 21)/360^circ xx 40^circ`

= `(22 xx 3 xx 21)/9`

= 22 × 7

= 154 cm2

Now, corresponding arc length of the sector PO1QP

= `θ_1/360^circ xx 2pi"r"`

= `120^circ/360^circ xx 2 xx 22/7 xx 7`

= `44/3 "cm"` 

And corresponding arc length of the sector AO2BA

= `θ_2/360^circ xx 2pi"r"`

= `40^circ/360^circ xx 2 xx 22/7 xx 21`

= `44/3 "cm"`

Hence, we observe that arc lengths of two sectors of two different circles may be equal but their area need not be equal.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Area Related To Circles - Exercise 11.4 [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 11 Area Related To Circles
Exercise 11.4 | Q 16 | पृष्ठ १३५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×