हिंदी

If a hexagon ABCDEF circumscribe a circle, prove that AB + CD + EF = BC + DE + FA. - Mathematics

Advertisements
Advertisements

प्रश्न

If a hexagon ABCDEF circumscribe a circle, prove that AB + CD + EF = BC + DE + FA.

योग

उत्तर


According to the question,

A Hexagon ABCDEF circumscribe a circle.

To prove: AB + CD + EF = BC + DE + FA

Proof: Tangents drawn from an external point to a circle are equal.

Hence, we have

AM = RA  ...Equation 1 [tangents from point A]

BM = BN  ...Equation 2 [tangents from point B]

CO = NC  ...Equation 3 [tangents from point C]

OD = DP  ...Equation 4 [tangents from point D]

EQ = PE  ...Equation 5 [tangents from point E]

QF = FR  ...Equation 6 [tangents from point F] [equation 1] + [equation 2] + [equation 3] + [equation 4] + [equation 5] + [equation 6]

AM + BM + CO + OD + EQ + QF = RA + BN + NC + DP + PE + FR

On rearranging, we get,

(AM + BM) + (CO + OD) + (EQ + QF) = (BN + NC) + (DP + PE) + (FR + RA)

AB + CD + EF = BC + DE + FA

Hence Proved!

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Circles - Exercise 9.4 [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 9 Circles
Exercise 9.4 | Q 1 | पृष्ठ ११०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×