рд╣рд┐рдВрджреА

If the Tangent at Point P to the Circle with Center O Cuts a Line Through O at Q Such that Pq = 24cm and Oq = 25 Cm. Find the Radius of Circle - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If the tangent at point P to the circle with center O cuts a line through O at Q such that PQ= 24cm and OQ = 25 cm. Find the radius of circle

рдЙрддреНрддрд░

Given,

PQ = 24 cm

OQ = 25 cm

OP = radius = ?

P is point of contact, At point of contact, tangent and radius are perpendicular to each other

∴ ΔPOQ is right angled triangle ∠OPQ = 90°

By Pythagoras theorem,

ЁЭСГЁЭСД2 + ЁЭСВЁЭСГ2 = ЁЭСВЁЭСД2

⇒ 242 + ЁЭСВЁЭСГ2 = 252

⇒`PO = sqrt((25)^2 − (24)^2) = sqrt(625 − 576)`

= `sqrt(49)` = 7ЁЭСРЁЭСЪ

∴ ЁЭСВЁЭСГ = ЁЭСЯЁЭСОЁЭССЁЭСЦЁЭСвЁЭСа = 7ЁЭСРЁЭСЪ

 

 

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Circles - Exercise 8.1 [рдкреГрд╖реНрда рел]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Circles
Exercise 8.1 | Q 4 | рдкреГрд╖реНрда рел

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

In Fig. 1, QR is a common tangent to the given circles, touching externally at the point T. The tangent at T meets QR at P. If PT = 3.8 cm, then the length of QR (in cm) is :

(A) 3.8
(B) 7.6
(C) 5.7
(D) 1.9


O is the center of a circle of radius 8cm. The tangent at a point A on the circle cuts a line through O at B such that AB = 15 cm. Find OB


Fill in the blank

Circles having the same centre and different radii are called ...........................circles.


In the given figure, a circle with center O, is inscribed in a quadrilateral ABCD such that it touches the side BC, AB, AD and CD at points P, Q, R and S respectively. If AB = 29cm, AD = 23cm, ∠B = 90° and DS=5cm then find the radius of the circle.

 


AB is a chord of a circle with centre O , AOC  is a diameter and AT is the tangent at A as shown in Fig . 10.70. Prove that \[\angle\]BAT = \[\angle\] ACB


AB and CD are two equal chords of a drde intersecting at Pas shown in fig. P is joined to O , the centre of the cirde. Prove that OP bisects  ∠ CPB. 


The center of a circle is at point O and its radius is 8 cm. State the position of a point P (point P may lie inside the circle, on the circumference of the circle, or outside the circle), when:

(a) OP = 10.6 cm

(b) OP = 6.8 cm

(c) OP = 8 cm


The length of the tangent from point A to a circle, of radius 3 cm, is 4 cm. The distance of A from the centre of the circle is ______  


In the following figure, if AOB is a diameter of the circle and AC = BC, then ∠CAB is equal to ______.


Assertion (A): If the circumference of a circle is 176 cm, then its radius is 28 cm.

Reason (R): Circumference = 2π × radius of a circle.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×