рд╣рд┐рдВрджреА

O is the Center of a Circle of Radius 8cm. the Tangent at a Point a on the Circle Cuts a Line Through O at B Such that Ab = 15 Cm. Find Ob - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

O is the center of a circle of radius 8cm. The tangent at a point A on the circle cuts a line through O at B such that AB = 15 cm. Find OB

рдпреЛрдЧ

рдЙрддреНрддрд░

Consider a circle with center O and radius OA = 8cm = r, AB = 15 cm.

(AB) tangent is drawn at A (point of contact)

At point of contact, we know that radius and tangent are perpendicular.

In ΔOAB, ∠OAB = 90°, By Pythagoras theorem

ЁЭСВЁЭР╡2 = ЁЭСВЁЭР┤2 + ЁЭР┤ЁЭР╡2

`OB = sqrt(8^2 + 15^2)`

`=sqrt(64+225)`

`= sqrt(289)`

= 17 cm

∴ ЁЭСВЁЭР╡ = 17 ЁЭСРЁЭСЪ

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Circles - Exercise 8.1 [рдкреГрд╖реНрда рел]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Circles
Exercise 8.1 | Q 3 | рдкреГрд╖реНрда рел
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×