हिंदी

In the Given Figure, O is the Centre of the Circle. Find ∠Cbd. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, is the centre of the circle. Find ∠CBD.

टिप्पणी लिखिए

उत्तर

It is given that, `angle AOC = 100°` 

We have to find  `angleCBD`

Since   `angleAOC = 100°`     (Given)

So,

`angleAPC = 1/2 angleAOC`        (The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.)

`⇒ angleAPC = 1/2 xx 100`

                   = 50°

Now,
`angle APC + angleABC = 180° `
       (Opposite pair of angle of cyclic quadrilateral)

So,

`50°+ angleABC = 180° `

        `angleABC = 180° - 50°` 

                     = 130°

   ⇒`angle ABC`  =  130°      …… (1)

`angle ABC + angleCBD = 180° `    (Linear pair)

  `130° + angle CBD = 180°       ( angleABC = 130)`

                `angle CBD = 180° - 130° `

                              = 50° 

   Hence  `angle CBD ` = 50°

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Circles - Exercise 15.5 [पृष्ठ १०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 15 Circles
Exercise 15.5 | Q 6 | पृष्ठ १०१

संबंधित प्रश्न

Fill in the blank

A continuous piece of a circle is ............... of the circle


Find the length of tangent drawn to a circle with radius 8 cm form a point 17 cm away from the center of the circle


In the given figure, ABCD is a cyclic quadrilateral. If ∠BCD = 100° and ∠ABD = 70°, find ∠ADB.


In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.


In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle.  seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:
a. Draw ray CE. It intersects the circle at D.
b. Show that CE = ED.
c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof. 


Construct a triangle PQR in which, PQ = QR = RP = 5.7 cm. Draw the incircle of the triangle and measure its radius.


State, if the following statement is true or false:

If the end points A and B of the line segment lie on the circumference of a circle, AB is a diameter.


Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord


In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS) 

(iii) m(arc QSR)


A 7 m broad pathway goes around a circular park with a circumference of 352 m. Find the area of road.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×