हिंदी

∆LMN ~ ∆PQR, 9 × A (∆PQR ) = 16 × A (∆LMN). If QR = 20 then Find MN. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

∆LMN ~ ∆PQR, 9 × A (∆PQR ) = 16 × A (∆LMN). If QR = 20 then Find MN. 

योग

उत्तर

Given:

QR = 20

∆LMN ~ ∆PQR

9 × A (∆PQR ) = 16 × A (∆LMN)

Consider, 9 × A (∆PQR ) = 16 × A (∆LMN) 

\[\frac{A\left( ∆ LMN \right)}{A\left( ∆ PQR \right)} = \frac{9}{16}\]

\[ \Rightarrow \frac{{MN}^2}{{QR}^2} = \frac{3^2}{4^2}\]

\[ \Rightarrow \frac{MN}{QR} = \frac{3}{4}\] 

\[\Rightarrow MN = \frac{3}{4} \times QR\]

\[ \Rightarrow MN = \frac{3}{4} \times 20 \left[ \because QR = 20 \right]\]

\[ \Rightarrow MN = 15\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Similarity - Practice Set 1.4 [पृष्ठ २५]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 1 Similarity
Practice Set 1.4 | Q 4 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If ∆ABC is similar to ∆DEF such that ∆DEF = 64 cm2 , DE = 5.1 cm and area of ∆ABC = 9 cm2 . Determine the area of AB


D, E, F are the mid-point of the sides BC, CA and AB respectively of a ∆ABC. Determine the ratio of the areas of ∆DEF and ∆ABC.


Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2 CD, find the ratio of the areas of triangles AOB and COD.


In Figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that `(ar(ABC))/(ar(DBC)) = (AO)/(DO)`


Triangles ABC and DEF are similar If AC = 19cm and DF = 8 cm, find the ratio of the area of two triangles.


The areas of two similar triangles are 81 cm2 and 49 cm2 respectively. Find the ratio of their corresponding heights. What is the ratio of their corresponding medians?


ABCD is a trapezium in which AB || CD. The diagonals AC and BD intersect at O. Prove that: (i) ΔAOB and ΔCOD (ii) If OA = 6 cm, OC = 8 cm,

Find:(a)  `("area"(triangleAOB))/("area"(triangleCOD))`

(b)  `("area"(triangleAOD))/("area"(triangleCOD))`


If ∆ABC ~ ∆PQR and AB : PQ = 2 : 3, then fill in the blanks. 

\[\frac{A\left( ∆ ABC \right)}{A\left( ∆ PQR \right)} = \frac{{AB}^2}{......} = \frac{2^2}{3^2} = \frac{......}{.......}\]


If ∆ABC ~ ∆PQR, A (∆ABC) = 80, A (∆PQR) = 125, then fill in the blanks. \[\frac{A\left( ∆ ABC \right)}{A\left( ∆ . . . . \right)} = \frac{80}{125} \therefore \frac{AB}{PQ} = \frac{......}{......}\] 


Areas of two similar triangles are 225 sq.cm. 81 sq.cm. If a side of the smaller triangle is 12 cm, then Find corresponding side of the bigger triangle.


∆MNT ~ ∆QRS. Length of altitude drawn from point T is 5 and length of altitude drawn from point S is 9. Find the ratio `("A"(Δ"MNT"))/("A"(Δ"QRS"))`.


If ∆XYZ ~ ∆PQR and A(∆XYZ) = 25 cm2, A(∆PQR) = 4 cm2 then XY : PQ = ?


In ΔLMN, ∠L = 50° and ∠N = 60°, If ΔLMN ~ ΔPQR, then find ∠Q.


O is a point on side PQ of a APQR such that PO = QO = RO, then ______.


In the given figure, D is the mid-point of BC, then the value of `(coty^circ)/(cotx^circ)` is ______.


Find the length of ST, if ΔPQR ∼ ΔPST.


In ΔABC, seg DE || side BC. If 2A(ΔADE) = A(⬜ DBCE), find AB : AD and show that BC = `sqrt(3)` DE.


If ΔPQR ∼ ΔABC; PQ = 6 cm, AB = 8 cm and the perimeter of ΔABC is 36 cm, then the perimeter of ΔPQR is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×