рд╣рд┐рдВрджреА

Prove that the Intercept of a Tangent Between Two Parallel Tangents to a Circle Subtends a Right Angle at Center. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at center.

рдЙрддреНрддрд░

Consider circle with center ‘O’ and has two parallel tangents through A & B at ends of
diameter.

Let tangents through M intersects the tangents parallel at P and Q required to prove is that ∠POQ = 90°.

From fig. it is clear that ABQP is a quadrilateral

∠A + ∠B = 90° + 90° = 180° [At point of contact tangent & radius are perpendicular]

∠A + ∠B + ∠P + ∠Q = 360° [Angle sum property]

∠P + ∠Q = 360°−180° = 180° …..(i)

At P & Q ∠APO = ∠OPQ =1/2∠ЁЭСГ

∠BQO = ∠PQO =`1/2`∠ЁЭСД in (i)

2∠OPQ + 2 ∠PQO = 180°

∠OPQ + ∠PQO = 90° …. (ii)

In ΔOPQ, ∠OPQ + ∠PQO + ∠POQ = 180° [Angle sum property]

90° + ∠POQ = 180° [from (ii)]

∠POQ = 180° − 90° = 90°

∴ ∠POQ = 90°

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Circles - Exercise 8.2 [рдкреГрд╖реНрда рейрек]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Circles
Exercise 8.2 | Q 10 | рдкреГрд╖реНрда рейрек
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×