हिंदी

Water rises to a height of 20 mm in a capillary tube. If the radius made 1/3rd of its previous value, to what height will the water now rise in the tube? - Physics

Advertisements
Advertisements

प्रश्न

Water rises to a height of 20 mm in a capillary tube. If the radius made 1/3rd of its previous value, to what height will the water now rise in the tube?  

योग

उत्तर

As, `h_1/h_2 = r_2/r_1`

∴ h= `(h_1r_1)/r_2 = 20 xx r_1/((r_1"/"3)) = 60` mm

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Mechanical Properties of fluids - Very Short Answer

APPEARS IN

एससीईआरटी महाराष्ट्र Physics [English] 12 Standard HSC
अध्याय 2 Mechanical Properties of fluids
Very Short Answer | Q 7

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A raindrop of diameter 4 mm is about to fall on the ground. Calculate the pressure inside the raindrop. [Surface tension of water T = 0.072 N/m, atmospheric pressure = 1.013 x 105 N/m2 ]


Draw a neat labelled diagram showing forces acting on the meniscus of water in a capillary tube.


Define the angle of contact.


In which of the following substances, surface tension increases with increase in temperature ?

  1. Copper
  2. Molten copper
  3. Iron
  4. Molten iron

The surface tension of water at 0ºc is 75·5 dyne/cm. Find surface tension of water at 25°C. [ α for water = 0·0021/°C ]


Explain why The angle of contact of mercury with glass is obtuse, while that of water with glass is acute


Fill in the blanks using the word(s) from the list appended with each statement

Surface tension of liquids generally . . . with temperatures (increases / decreases)


Figure  (a) shows a thin liquid film supporting a small weight = 4.5 × 10–2 N. What is the weight supported by a film of the same liquid at the same temperature in Fig. (b) and (c)? Explain your answer physically.


Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in the tube relative to the liquid surface outside? Surface tension of mercury at the temperature of the experiment is 0.465 N m–1. Density of mercury = 13.6 × 103 kg m–3


Two narrow bores of diameters 3.0 mm and 6.0 mm are joined together to form a U-tube open at both ends. If the U-tube contains water, what is the difference in its levels in the two limbs of the tube? Surface tension of water at the temperature of the experiment is 7.3 × 10–2 N m–1. Take the angle of contact to be zero and density of water to be 1.0 × 103 kg m–3 (g = 9.8 m s–2)


The total free surface energy of a liquid drop is `pisqrt2` times the surface tension of the liquid. Calculate the diameter of the drop in S.l. unit.


A big drop of radius R is formed from 1000 droplets of water. The radius of a droplet will be _______

A) 10 R

B) R/10

C) R/100

D) R/1000


When a sparingly soluble substance like alcohol is dissolved in water, surface tension of water


The free surface of a liquid resting in an inertial frame is horizontal. Does the normal to the free surface pass through the centre of the earth? Think separately if the liquid is (a) at the equator (b) at a pole (c) somewhere else.


Frictional force between solids operates even when they do not move with respect to each other. Do we have viscous force acting between two layers even if there is no relative motion?


If water in one flask and castor oil in other are violently shaken and kept on a table, which will come to rest earlier?


By a surface of a liquid we mean


When water droplets merge to form a bigger drop


Air is pushed into a soap bubble of radius r to double its radius. If the surface tension of the soap solution in S, the work done in the process is 


If more air is pushed in a soap bubble, the pressure in it


Water rises in a vertical capillary tube up to a length of 10 cm. If the tube is inclined at 45°, the length of water risen in the tube will be


The rise of a liquid in a capillary tube depends on

(a) the material
(b) the length
(c) the outer radius
(d) the inner radius of the tube


A liquid is contained in a vertical tube of semicircular cross section. The contact angle is zero. The force of surface tension on the curved part and on the flat part are in ratio


When a capillary tube is dipped into a liquid, the liquid neither rises nor falls in the capillary.
(a) The surface tension of the liquid must be zero.
(b) The contact angle must be 90°.
(c) The surface tension may be zero.
(d) The contact angle may be 90°.


A 5.0 cm long straight piece of thread is kept on the surface of water. Find the force with which the surface on one side of the thread pulls it. Surface tension of water = 0.076 N m−1.


A capillary tube of radius 0.50 mm is dipped vertically in a pot of water. Find the difference between the pressure of the water in the tube 5.0 cm below the surface and the atmospheric pressure. Surface tension of water = 0.075 N m−1.


Find the force exerted by the water on a 2 m2 plane surface of a large stone placed at the bottom of a sea 500 m deep. Does the force depend on the orientation of the surface?


A metal piece of mass 160 g lies in equilibrium inside a glass of water. The piece touches the bottom of the glass at a small number of points. If the density of the metal is 8000 kg/m3, find the normal force exerted by the bottom of the glass on the metal piece.


The energy stored in a soap bubble of diameter 6 cm and T = 0.04 N/m is nearly ______.


Calculate the rise of water inside a clean glass capillary tube of radius 0.1 mm, when immersed in water of surface tension 7 × 10-2 N/m. The angle of contact between water and glass is zero, the density of water = 1000 kg/m3, g = 9.8 m/s2.


The surface tension of a liquid at critical temperature is ______ 


Obtain an expression for the capillary rise or fall using the forces method.  


A u-tube is made up of capillaries of bore 1 mm and 2 mm respectively. The tube is held vertically and partially filled with a liquid of surface tension 49 dyne/cm and zero angles of contact. Calculate the density of the liquid, if the difference in the levels of the meniscus is 1.25 cm. take g = 980 cm/s 


Numerical Problem.

A stone weighs 500 N. Calculate the pressure exerted by it if it makes contact with a surface of area 25 cm2.


How does the friction arise between the surfaces of two bodies in relative motion?


Distinguish between cohesive and adhesive forces.


Obtain an expression for the surface tension of a liquid by the capillary rise method.


Why coffee runs up into a sugar lump (a small cube of sugar) when one corner of the sugar lump is held in the liquid?


The excess of pressure, due to surface tension, on a spherical liquid drop of radius 'R' is proportional to ______.


A molecule of water on the surface experiences a net ______.


The upward force of 105 dyne due to surface tension is balanced by the force due to the weight of the water column and 'h' is the height of water in the capillary. The inner circumference of the capillary is ______.

(surface tension of water = 7 × 10-2 N/m)


What is surface tension? Explain the applications of surface tension.


For a surface molecule ______.

  1. the net force on it is zero.
  2. there is a net downward force.
  3. the potential energy is less than that of a molecule inside.
  4. the potential energy is more than that of a molecule inside.

The free surface of oil in a tanker, at rest, is horizontal. If the tanker starts accelerating the free surface will be titled by an angle θ. If the acceleration is a ms–2, what will be the slope of the free surface?


If a drop of liquid breaks into smaller droplets, it results in lowering of temperature of the droplets. Let a drop of radius R, break into N small droplets each of radius r. Estimate the drop in temperature.


This model of the atmosphere works for relatively small distances. Identify the underlying assumption that limits the model.


Surface tension is exhibited by liquids due to force of attraction between molecules of the liquid. The surface tension decreases with increase in temperature and vanishes at boiling point. Given that the latent heat of vaporisation for water Lv = 540 k cal kg–1, the mechanical equivalent of heat J = 4.2 J cal–1, density of water ρw = 103 kg l–1, Avagadro’s No NA = 6.0 × 1026 k mole–1 and the molecular weight of water MA = 18 kg for 1 k mole.

  1. Estimate the energy required for one molecule of water to evaporate.
  2. Show that the inter–molecular distance for water is `d = [M_A/N_A xx 1/ρ_w]^(1/3)` and find its value.
  3. 1 g of water in the vapor state at 1 atm occupies 1601 cm3. Estimate the intermolecular distance at boiling point, in the vapour state.
  4. During vaporisation a molecule overcomes a force F, assumed constant, to go from an inter-molecular distance d to d ′. Estimate the value of F.
  5. Calculate F/d, which is a measure of the surface tension.

A hot air balloon is a sphere of radius 8 m. The air inside is at a temperature of 60°C. How large a mass can the balloon lift when the outside temperature is 20°C? (Assume air is an ideal gas, R = 8.314 J mole–1K–1, 1 atm. = 1.013 × 105 Pa; the membrane tension is 5 Nm–1.)


A soap bubble of radius 3 cm is formed inside another soap bubble of radius 6 cm. The radius of an equivalent soap bubble which has the same excess pressure as inside the smaller bubble with respect to the atmospheric pressure is ______ cm.


In a U-tube, the radii of two columns are respectively r1 and r2. When a liquid of density ρ(θ = 0°) is filled in it, a level difference of h is observed on two arms, then the surface tension of the liquid is ______.


When an air bubble of radius r rises from the bottom to the surface of a lake, its radius becomes `(5r)/4`. Taking the atmospheric pressure to be equal to the 10 m height of the water column, the depth of the lake would approximately be ______.

(ignore the surface tension and the effect of temperature)


The surface tension of soap solution is 25 × 10-3 Nm-1. The excess of pressure inside a soap bubble of diameter 1 cm is ______.


A drop of water of radius 8 mm breaks into number of droplets each of radius 1 mm. How many droplets will be formed?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×