Advertisements
Advertisements
प्रश्न
ABCD is a parallelogram. The sides AB and AD are produced to E and F respectively, such produced to E and F respectively, such that AB = BE and AD = DF.
Prove that: ΔBEC ≅ ΔDCF.
उत्तर
ABCD is a parallelogram, The sides AB and AD are produced to E and F respectively,
such that AB = BE and AD = DF
We need to prove that ΔBEC ≅ ΔDCF.
Proof:
AB = DC ...[ Opposite sides of a parallelogram ] ...(1)
AB = BE ...[ Given ] ...(2)
From (1) and (2), We have
BE = DC ...(3)
AD = BC ...[ Opposite sides of a parallelogram ] ...(4)
AD = DF ....[Given] ...(5)
From (4) and (5), we have
BC = DF ...(6)
Since AD II BC, the corresponding angles are equal.
∴ ∠DAB = ∠CBE ...(7)
Since AB II DC, the corresponding angles are equal.
∴ ∠DAB = ∠FDC ...(8)
From (7) and (8), we have
∠CBE = ∠FDC
ln ΔBEC and ΔDCF
BF = DC ....[ from (3) ]
∠CBE = ∠FDC ...[ from (9) ]
BC = DF ....[ from (6) ]
∴ By Side-Angle-Side criterion of congruence,
ΔBEC ≅ ΔDCF
Hence proved.
APPEARS IN
संबंधित प्रश्न
In quadrilateral ACBD, AC = AD and AB bisects ∠A (See the given figure). Show that ΔABC ≅ ΔABD. What can you say about BC and BD?
AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.
AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that ∠BAD = ∠ABE and ∠EPA = ∠DPB (See the given figure). Show that
- ΔDAP ≅ ΔEBP
- AD = BE
In the given figure, prove that:
CD + DA + AB + BC > 2AC
In two triangles ABC and DEF, it is given that ∠A = ∠D, ∠B = ∠E and ∠C =∠F. Are the two triangles necessarily congruent?
In two triangles ABC and ADC, if AB = AD and BC = CD. Are they congruent?
D, E, F are the mid-point of the sides BC, CA and AB respectively of ΔABC. Then ΔDEF is congruent to triangle
In a triangle ABC, D is mid-point of BC; AD is produced up to E so that DE = AD. Prove that:
AB = CE.
In the following figure, AB = EF, BC = DE and ∠B = ∠E = 90°.
Prove that AD = FC.
AD and BC are equal perpendiculars to a line segment AB. If AD and BC are on different sides of AB prove that CD bisects AB.