मराठी

Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.

बेरीज

उत्तर

Let QR be a chord in a circle with center O and ∠1 and ∠2 are the angles made by tangent at point R and Q with chord respectively.

To Prove: ∠1 = ∠2

Let P be another point on the circle, then, join PQ and PR.

Since, at point Q, there is a tangent.

∠RPQ = ∠2   ...[Angles in alternate segments are equal] [Equation 1]

Since, at point R, there is a tangent.

∠RPQ = ∠1  ...[Angles in alternate segments are equal] [Equation 2]

From equation 1 and equation 2

∠1 = ∠2

Hence Proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Circles - Exercise 9.3 [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 9 Circles
Exercise 9.3 | Q 9 | पृष्ठ १०८

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×