Advertisements
Advertisements
प्रश्न
वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।
उत्तर
हम जानते हैं कि दो वक्रों का प्रतिच्छेदन कोण वक्रों के प्रतिच्छेदन बिंदु पर खींची गई स्पर्श रेखाओं के बीच के कोण के बराबर होता है।
दिए गए वक्र हैं y = 4 – x2 ....(i) और y = x2 .....(ii)
विभेदक समीकरण (i) और (ii) के संबंध में x हमारे पास है
`"dy"/"dx"` = – 2x
⇒ m1 = – 2x
m1 वक्र (i) की स्पर्श रेखा का ढाल है।
और `"dy"/"dx"` = 2x
⇒ m2 = 2x
m2 वक्र (ii) की स्पर्शरेखा का ढाल है।
तो, m1 = – 2x और m2 = 2x
अब समीकरण (i) और (ii) को हल करना
⇒ 4 – x2 = x2
⇒ 2x2 = 4
⇒ x2 = 2
⇒ x = `+- sqrt(2)`
तो, m1 = – 2x
= `-2sqrt(2)` तथा m2 = 2x = `2sqrt(2)`
मान लीजिए θ दो वक्रों का प्रतिच्छेदन कोण है
∴ tan θ = `|("m"_2 - "m"_1)/(1 + "m"_1"m"_2)|`
= `|(2sqrt(2) + 2sqrt(2))/(1 - (2sqrt(2))(2sqrt(2)))|`
= `|(4sqrt(2))/(1 - 8)|`
= `|(4sqrt(2))/(1 - 8)|`
= `|(4sqrt(2))/(-7)|`
= `(4sqrt(2))/7`
∴ θ = `tan^-1 ((4sqrt(2))/7)`
अत: अभीष्ट कोण `tan^-1 ((4sqrt(2))/7)` है।
APPEARS IN
संबंधित प्रश्न
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।
अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।
सिद्ध कीजिए कि `x + 1/x` का स्थानीय उच्चतम मीन उसके स्थानीय निम्नतम मान से कम है।
किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।
अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।
वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:
यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।
sinx + cosx का उच्चिष्ठ मान ______ है।
नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।
कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।
(1.999)5 का सन्निकट मान ज्ञात कीजिए।
किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।
सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।
सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।
सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।
यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।
c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।
यदि किसी घन तथा गोले के पृष्ठीय क्षेत्रफल का योगफल अचर है तो घन के एक कोर (edge) तथा गोले के व्यास का अनुपात उस समय क्या है जब उनके आयतन का योगफल निम्नतम है?
AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।
भुजा x, 2x और `x/3` किसी आयताकार समांतर षट्फलक तथा एक गोले के पृष्ठीय क्षेत्रफल का योगफल अचर दिया हुआ है। सिद्ध कीजिए कि उनके आयतन का योगफल निम्नतम होगा, यदि x गोले की त्रिज्या के तीन गुने के बराबर है। उनके आयतन के योगफल का निम्नतम मान भी ज्ञात कीजिए।
एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:
बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______
फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______
sin x . cos x का उच्चतम मान है ______
f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______
वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु ______ पर स्पर्श करते हैं।
फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।