English
Karnataka Board PUCPUC Science Class 11

A Particle Executes Simple Harmonic Motion Let P Be a Point Near the Mean Position and Q Be a Point Near an Extreme. - Physics

Advertisements
Advertisements

Question

A particle executes simple harmonic motion Let P be a point near the mean position and Q be a point near an extreme. The speed of the particle at P is larger than the speed at Q. Still the particle crosses Pand Q equal number of times in a given time interval. Does it make you unhappy?

Short Note

Solution

No. It does not make me unhappy because the number of times a particle crosses the mean and extreme positions does not depend on the speed of the particle.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - Short Answers [Page 249]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
Short Answers | Q 6 | Page 249

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Assuming the expression for displacement of a particle starting from extreme position, explain graphically the variation of velocity and acceleration w.r.t. time.


It is proposed to move a particle in simple harmonic motion on a rough horizontal surface by applying an external force along the line of motion. Sketch the graph of the applied force against the position of the particle. Note that the applied force has two values for a given position depending on whether the particle is moving in positive or negative direction.


Figure represents two simple harmonic motions.

The parameter which has different values in the two motions is


The average energy in one time period in simple harmonic motion is


A pendulum clock keeping correct time is taken to high altitudes,


In a simple harmonic motion


A pendulum having time period equal to two seconds is called a seconds pendulum. Those used in pendulum clocks are of this type. Find the length of a second pendulum at a place where = π2 m/s2.


The pendulum of a certain clock has time period 2.04 s. How fast or slow does the clock run during 24 hours?


A small block oscillates back and forth on a smooth concave surface of radius R in Figure. Find the time period of small oscillation.


A spherical ball of mass m and radius r rolls without slipping on a rough concave surface of large radius R. It makes small oscillations about the lowest point. Find the time period.


A simple pendulum of length 40 cm is taken inside a deep mine. Assume for the time being that the mine is 1600 km deep. Calculate the time period of the pendulum there. Radius of the earth = 6400 km.


A hollow sphere of radius 2 cm is attached to an 18 cm long thread to make a pendulum. Find the time period of oscillation of this pendulum. How does it differ from the time period calculated using the formula for a simple pendulum?


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


Three simple harmonic motions of equal amplitude A and equal time periods in the same direction combine. The phase of the second motion is 60° ahead of the first and the phase of the third motion is 60° ahead of the second. Find the amplitude of the resultant motion.


A simple pendulum has a time period T1. When its point of suspension is moved vertically upwards according to as y = kt2, where y is the vertical distance covered and k = 1 ms−2, its time period becomes T2. Then, T `"T"_1^2/"T"_2^2` is (g = 10 ms−2)


What is meant by simple harmonic oscillation? Give examples and explain why every simple harmonic motion is a periodic motion whereas the converse need not be true.


Consider the Earth as a homogeneous sphere of radius R and a straight hole is bored in it through its centre. Show that a particle dropped into the hole will execute a simple harmonic motion such that its time period is

T = `2π sqrt("R"/"g")`


Displacement vs. time curve for a particle executing S.H.M. is shown in figure. Choose the correct statements.

  1. Phase of the oscillator is same at t = 0 s and t = 2s.
  2. Phase of the oscillator is same at t = 2 s and t = 6s.
  3. Phase of the oscillator is same at t = 1 s and t = 7s.
  4. Phase of the oscillator is same at t = 1 s and t = 5s.

A container consist of hemispherical shell of radius 'r ' and cylindrical shell of height 'h' radius of same material and thickness. The maximum value h/r so that container remain stable equilibrium in the position shown (neglect friction) is ______.


Which of the following expressions corresponds to simple harmonic motion along a straight line, where x is the displacement and a, b, and c are positive constants?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×