English
Karnataka Board PUCPUC Science Class 11

(A) → R = 1 M ∑ I M I → R I and (B) → a C M = → F M in a Noninertial Frame - Physics

Advertisements
Advertisements

Question

Consider the following the equations
(A) \[\vec{R} = \frac{1}{M} \sum_i m_i \vec{r_i}\] and
(B) \[\vec{a}_{CM} = \frac{\vec{F}}{M}\] 
In a noninertial frame

Options

  • both are correct

  • both are wrong

  •  A is correct but B is wrong

  •  B is correct but A is wrong.

MCQ

Solution

 A is correct but B is wrong

In a non-inertial frame, the position of centre of mass of the particle does not change but an additional pseudo force acts on it.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Centre of Mass, Linear Momentum, Collision - MCQ [Page 157]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 9 Centre of Mass, Linear Momentum, Collision
MCQ | Q 1 | Page 157

RELATED QUESTIONS

You are waiting for a train on a railway platform. Your three-year-old niece is standing on your iron trunk containing the luggage. Why does the trunk not recoil as she jumps off on the platform?


You are holding a cage containing a bird. Do you have to make less effort if the bird flies from its position in the cage and manages to stay in the middle without touching the walls of the cage? Does it makes a difference whether the cage is completely closed or it has rods to let air pass?


In an elastic collision


Three particles of masses 1.0 kg, 2.0 kg and 3.0 kg are placed at the corners A, B and C respectively of an equilateral triangle ABC of edge 1 m. Locate the centre of mass of the system.  


Seven homogeneous bricks, each of length L, are arranged as shown in figure. Each brick is displaced with respect to the one in contact by L/10. Find the x-coordinate fo the centre of mass relative to the origin shown.


Consider a gravity-free hall in which a tray of mass M, carrying a cubical block of ice of mass m and edge L, is at rest in the middle. If the ice melts, by what distance does the centre of mass of "the tray plus the ice" system descend? 


Find the ratio of the linear momenta of two particles of masses 1.0 kg and 4.0 kg if their kinetic energies are equal.


Two fat astronauts each of mass 120 kg are travelling in a closed  spaceship moving at a speed of 15 km/s in the outer space far removed from all other material objects. The total mass of the spaceship and its contents including the astronauts is 660 kg. If the astronauts do slimming exercise and thereby reduce their masses to 90 kg each, with what velocity will the spaceship move?


In an elastic collision


Consider the situation of the previous problem. Suppose the block of mass m1 is pulled by a constant force F1 and the other block is pulled by a constant force F2. Find the maximum elongation that the spring will suffer.  


A block of mass m is placed on a triangular block of mass M which in turn is placed on a horizontal surface as shown in figure. Assuming frictionless surfaces find the velocity of the triangular block when the smaller block reaches the bottom end.


Two small balls A and B, each of mass m, are joined rigidly to the ends of a light rod of length L (see the following figure). The system translates on a frictionless horizontal surface with a velocity \[\nu_0\] in a direction perpendicular to the rod. A particle P of mass m kept at rest on the surface sticks to the ball A as the ball collides with it. Find
(a) the linear speeds of the balls A and B after the collision, (b) the velocity of the centre of mass C of the system A + B + P and (c) the angular speed of the system about C after the collision.

[Hint : The light rod will exert a force on the ball B
only along its length.]


The speed of the centre of a wheel rolling on a horizontal surface is vo. A point on the rim is level with the centre will be moving at a speed of, ______


Two particles P and Q of mass 1 kg and 3 kg respectively start moving towards each other from rest under mutual attraction. What is the velocity of their center of mass?


Three equal masses each of 50 g, are placed at the corners of a right angled isosceles triangle whose two equal sides are 5 cm each. The position of the centre of mass of the system is ____________.


A mass of 1kg is suspended by a string. It is first lifted up with an acceleration of 4.9 m/s2 and then lowered down with same acceleration. The ratio of tensions in the string in the two cases, respectively is g = 9.8 m/s2 ______.


Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass:

  1. Show pi = p’+ miV Where pi is the momentum of the ith particle (of mass mi)  and p′ i = mi v′ i. Note v′ i is the velocity of the ith particle relative to the centre of mass. Also, prove using the definition of the centre of mass `sum"p""'"_"t" = 0`
  2. Show K = K′ + 1/2MV2

    where K is the total kinetic energy of the system of particles, K′ is the total kinetic energy of the
    system when the particle velocities are taken with respect to the centre of mass and MV2/2 is the
    kinetic energy of the translation of the system as a whole (i.e. of the centre of mass motion of the
    system). The result has been used in Sec. 7.14.

  3. Show where `"L""'" = sum"r""'"_"t" xx "p""'"_"t"` is the angular momentum of the system about the centre of mass with
    velocities taken relative to the centre of mass. Remember `"r"_"t" = "r"_"t" - "R"`; rest of the notation is the standard notation used in the chapter. Note L′ and MR × V can be said to be angular momenta, respectively, about and of the centre of mass of the system of particles.
  4. Show `"dL"^"'"/"dt" = ∑"r"_"i"^"'" xx "dP"^"'"/"dt"`
    Further show that `"dL"^'/"dt" = τ_"ext"^"'"`
    Where `"τ"_"ext"^"'"` is the sum of all external torques acting on the system about the centre of mass.
    (Hint: Use the definition of centre of mass and third law of motion. Assume the internal forces between any two particles act along the line joining the particles.)

The density of a non-uniform rod of length 1 m is given by ρ(x) = a(1 + bx2) where a and b are constants and 0 ≤ x ≤ 1. The centre of mass of the rod will be at ______.


(n – 1) equal point masses each of mass m are placed at the vertices of a regular n-polygon. The vacant vertex has a position vector a with respect to the centre of the polygon. Find the position vector of centre of mass.


A uniform square plate S (side c) and a uniform rectangular plate R (sides b, a) have identical areas and masses (Figure).


Show that

  1. IxR/IxS < 1
  2. IyR/IyS > 1
  3. IzR/IzS > 1

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×