Advertisements
Advertisements
Question
Determine the order and degree of the following differential equation:
`root(3)(1 +("dy"/"dx")^2) = ("d"^2"y")/"dx"^2`
Solution
The given D.E. is
`root(3)(1 +("dy"/"dx")^2) = ("d"^2"y")/"dx"^2`
On cubing both sides, we get
`1 +("dy"/"dx")^2 = (("d"^2"y")/"dx"^2)^3`
This D.E. has highest order derivative `("d"^2"y")/"dx"^2` with power 3.
∴ the given D.E. is of order 2 and degree 3.
RELATED QUESTIONS
Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
Determine the order and degree (if defined) of the differential equation:
y′′′ + 2y″ + y′ = 0
Determine the order and degree (if defined) of the differential equation:
y′ + y = ex
Determine the order and degree (if defined) of the differential equation:
y″ + 2y′ + sin y = 0
The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.
For the differential equation given below, indicate its order and degree (if defined).
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
For the differential equation given below, indicate its order and degree (if defined).
`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = e^x (acos x + b sin x) : (d^2y)/(dx^2) - 2 dy/dx + 2y = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = xsin 3x : (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`
Define degree of a differential equation.
Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]
Write the order of the differential equation of all non-horizontal lines in a plane.
Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]
Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]
Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]
Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]
Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is
The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is
The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is
If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Determine the order and degree (if defined) of the following differential equation:-
\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]
Determine the order and degree (if defined) of the following differential equation:-
y" + 2y' + sin y = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(1+x^2)` `y'=(xy)/(1+x^2)`
Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`.
Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "dy"/"dx" + "x" = sqrt(1 + ("d"^3"y")/"dx"^3)`
Determine the order and degree of the following differential equation:
`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`
Determine the order and degree of the following differential equation:
`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`
Determine the order and degree of the following differential equations.
`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`
Choose the correct alternative.
The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.
Fill in the blank:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.
Order and degree of a differential equation are always positive integers.
State whether the following is True or False:
The order of highest derivative occurring in the differential equation is called degree of the differential equation.
Select and write the correct alternative from the given option for the question
The order and degree of `(("d"y)/("d"x))^3 - ("d"^3y)/("d"x^3) + y"e"^x` = 0 are respectively
State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x
Order and degree of differential equation are always ______ integers
Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______
State whether the following statement is True or False:
Order and degree of differential equation are always positive integers.
The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is
The third order differential equation is ______
The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.
The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.
The order of the differential equation of all circles of given radius a is ______.
The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.
Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.
Write the sum of the order and the degree of the following differential equation:
`d/(dx) (dy/dx)` = 5
The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:
The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.
y2 = (x + c)3 is the general solution of the differential equation ______.
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.
The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.
The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.
Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`