Advertisements
Advertisements
Question
f के सभी असांतत्य के बिंदुओं को ज्ञात कीजिए, जहाँ `f (x) = {(sinx/x, "यदि" x<0),(x + 1, "यदि" x >= 0):}`
Solution 1
दृष्टिकोण 1:
मान लेते है की c एक असल अंक रेखा पर एक बिंदु है और c < 0
यदि f(x), x = c पर संतत है, इसका तात्पर्य होगा:
`"sin c"/"c"` संतत है, अर्थात sin c और c संतत फलन है, जोकि सच है।
अर्थात f(x) c < 0 के लिए संतत है।
दृष्टिकोण 2:
c = 0
यदि f(x), x = c पर संतत है, इसका तात्पर्य होगा:
f (c) =`lim_(x -> "c"^+) "f"(x) = lim_(x -> "c"^-) "f"(x)`
`=> 1 = 1 = ("sin" 0)/0`
`=> 1 = 1 = 1`
जो सत्य है अर्थात f(x), x = 0 पर संतत है।
दृष्टिकोण 3:
मान लेते है की c एक असल अंक रेखा पर एक बिंदु है और c > 0
यदि f(x), x = c पर संतत है, इसका तात्पर्य होगा:
c + 1 संतत है, जोकि सच है।
अर्थात f(x) c > 0 के लिए संतत है।
Solution 2
`f (x) = {(sinx/x, "यदि" x<0),(x + 1, "यदि" x >= 0):}`
x = 0 पर, f(0) = 1
L.H.L. = `lim_(x->0^+) f(x) = lim_(h->0)(sin(-h))/-h = 1`
R.H.L = `lim_(x->0^+) f(x) = lim_(h->0) (h + 1) = 0 + 1 = 1`
`lim_(x->0^-) f(x) = lim_(x->0^+) f (x) = f (0)`
∴ f, x = 0 पर संतत है।
जब x<0, sinx और x दोनों संतत हैं,
∴ `sinx/x` भी संतत है।
जब x>0, f(x) = x = x + 1 एक बहुपद है
∴ f संतत है।
= f किसी भी बिंदु पर असांतत्य नहीं है।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।
सिद्ध कीजिए कि फलन f(x) = xn, x = n, पर संतत है, जहाँ n एक धन पूर्णांक है।
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = x - 5
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= 1/(x - 5), x ne 5`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(2x + 3, "यदि" x<=2),(2x - 3, "यदि" x > 2):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x^10 - 1, "यदि" x<=1),(x^2, "यदि" x > 1):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(2"x""," " यदि", "x" < 0),(0"," " यदि", 0 le "x" le 1),(4"x" "," " यदि", "x" > 1):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(-2"," " यदि", "x" le -1),(2"x"","" यदि", -1 le "x" le 1),(2"," " यदि", "x" > 1):}`
a और b के उन मानों को ज्ञात कीजिए। जिनके लिए `f(x)= {(ax + 1, "यदि" x<= 3),(bx + 3, "यदि" x > 3):}` द्वारा परिभाषित फलन x = 3 पर संतत है।
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x. cos x
cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।
निर्धारित कीजिए कि फलन f, `"f"("x") = {("x"^2 "sin" 1/"x""," " यदि" "x" ne 0),(0"," " यदि" "x" = 0):}` द्वारा परिभाषित एक संतत फलन है।
f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:
`"f"("x") = {("sin x" - "cos x""," " यदि" "x" ne 0),(-1"," " यदि" "x" = 0):}`
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि" "x" ne pi/2),(3"," " यदि" "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx"^2"," " यदि" "x" le 2),(3"," " यदि" "x" > 2):}` द्वारा परिभाषित फलन x = 2 पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx" + 1"," " यदि" "x" le pi),("cos x"","" यदि" "x" > pi):}` द्वारा परिभाषित फलन `"x" = pi` पर
a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि" x le 2),("a"x + "b""," " यदि" 2 < x < 10),(21"," " यदि" x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।
दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।
दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।
जाँचिए कि क्या sin |x| एक संतत फलन है।
f(x) = |x| - |x + 1| द्वारा परिभाषित फलन के सभी असांत्यता के बिंदुओं को ज्ञात कीजिए।
यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।