Advertisements
Advertisements
Question
सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।
Solution
f(x) = 5x - 3
⇒ जब, x = 0
`lim_(x -> 0)` f(x) = `lim_(x -> 0)` (5x - 3)
= 5 × 0 - 3
= - 3
f(0) = 5 × 0 - 3 = - 3
`lim_(x -> 0)` f(x) = f(0)
अत: x = 1 पर f संतत है।
⇒ जब, x = - 3
`lim_(x -> -3)` f(x) = `lim_(x -> -3)` (5x - 3)
= 5 × (- 3)- 3
= -15 - 3
= - 18
f(-3) = 5 × (-3) -3 = - 18
`lim_(x -> -3)` f(x) = f(-3)
अत: x = -3 पर f संतत है।
⇒ जब, x = 5
`lim_(x -> 5)` f(x) = `lim_(x -> 5)` (5x - 3)
= 5 × 5 - 3
= 22
f(5) = 5 × 5 - 3 = 22
`lim_(x -> 5)` f(x) = f(5)
अत: x = 5 पर f संतत है।
APPEARS IN
RELATED QUESTIONS
x = 3 पर फलन f(x) = 2x2 - 1 के सातत्य की जाँच कीजिए।
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = x - 5
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= 1/(x - 5), x ne 5`
क्या `f (x) = {(x, "यदि" x<=1),(5, "यदि" x > 1):}` द्वारा परिभाषित फलन f, x = 0, x = 1 तथा x = 2 पर संतत है?
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|+3, "यदि" x<= -3),(-2x, "यदि" -3 < x < 3),(6x + 2, "यदि" x >= 3):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x+1, "यदि" x>=1),(x^2+1, "यदि" x < 1):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(x^3 - 3, "यदि" x <= 2),(x^2 + 1, "यदि" x > 2):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x^10 - 1, "यदि" x<=1),(x^2, "यदि" x > 1):}`
क्या `f (x) = {(x+5, "यदि" x<=1),(x - 5, "यदि" x > 1):}` द्वारा परिभाषित फलन, एक संतत फलन है?
फलन f के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(3"," " यदि", 0 le "x" le 1),(4"," " यदि", 1 < "x" < 3),(5"," " यदि", 3 le "x" le 10):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(-2"," " यदि", "x" le -1),(2"x"","" यदि", -1 le "x" le 1),(2"," " यदि", "x" > 1):}`
a और b के उन मानों को ज्ञात कीजिए। जिनके लिए `f(x)= {(ax + 1, "यदि" x<= 3),(bx + 3, "यदि" x > 3):}` द्वारा परिभाषित फलन x = 3 पर संतत है।
निम्नलिखित फलन के सातत्य पर विचार कीजिए -
f(x) = sin x + cos x
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x. cos x
cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।
f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:
`"f"("x") = {("sin x" - "cos x""," " यदि" "x" ne 0),(-1"," " यदि" "x" = 0):}`
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx" + 1"," " यदि" "x" le pi),("cos x"","" यदि" "x" > pi):}` द्वारा परिभाषित फलन `"x" = pi` पर
a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि" x le 2),("a"x + "b""," " यदि" 2 < x < 10),(21"," " यदि" x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।
f(x) = |x| - |x + 1| द्वारा परिभाषित फलन के सभी असांत्यता के बिंदुओं को ज्ञात कीजिए।
यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।