Advertisements
Advertisements
Question
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|+3, "यदि" x<= -3),(-2x, "यदि" -3 < x < 3),(6x + 2, "यदि" x >= 3):}`
Solution
`f(x) = {(|x|+3, "यदि" x<= -3),(-2x, "यदि" -3 < x < 3),(6x + 2, "यदि" x >= 3):}`
x < -3 के लिए, f(x) = `abs x + 3:`
-3 < x < 3, f(x) = - 2x तथा
x ≥ 3, f(x) = 6x + 2 एक बहुपद फलन है।
इसलिए यह फलन है।
⇒ x = - 3 पर,
`lim_(x -> 3^-) f(x) = lim_(x -> 3^-) (abs x + 3)`
`= lim_(h -> 0) [abs (-3 - h) + 3]`
`= lim_(h -> 0) (6 + h)`
= 6 + 0
= 6
`lim_(x -> 3^+)` f(x) = `lim_(x -> 3^+)` (-2 x)
`= lim_(h -> 0) [-2 (-3 + h)]`
`= lim_(h -> 0) (6 - 2h)`
`= 6 - 2 xx 0`
= 6
अत: x = -3 पर f संतत है।
⇒ x = 3 पर,
`lim_(x -> 3^-)` f(x) = `lim_(x -> 3^-)` (- 2x)
`= lim_(h -> 0) [-2 (3 - h)]`
= `lim_(h -> 0) (- 6 + 2 h)`
`= -6 + 2 xx 0`
= - 6
`lim_(x -> 3^+)` f(x) = `lim_(x -> 3^+)` (6x + 2)
= `lim_(h -> 0)` [6(3 + h) + 2]
= `lim_(h -> 0)` (18 + 6 h + 2)
= `lim_(h -> 0)` (20 + 6h)
= 20 + 6 × 0
= 20
अत: x = 3 पर f संतत नहीं है।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।
x = 3 पर फलन f(x) = 2x2 - 1 के सातत्य की जाँच कीजिए।
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = x - 5
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= 1/(x - 5), x ne 5`
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= (x^2 - 25)/(x + 5), x ne -5`
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = `abs (x - 5)`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(2x + 3, "यदि" x<=2),(2x - 3, "यदि" x > 2):}`
क्या `f (x) = {(x, "यदि" x<=1),(5, "यदि" x > 1):}` द्वारा परिभाषित फलन f, x = 0, x = 1 तथा x = 2 पर संतत है?
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|/x , "यदि" x != 0),(0, "यदि" x = 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x/|x|, "यदि" x<0),(-1, "यदि" x >= 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x^10 - 1, "यदि" x<=1),(x^2, "यदि" x > 1):}`
क्या `f (x) = {(x+5, "यदि" x<=1),(x - 5, "यदि" x > 1):}` द्वारा परिभाषित फलन, एक संतत फलन है?
फलन f के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(3"," " यदि", 0 le "x" le 1),(4"," " यदि", 1 < "x" < 3),(5"," " यदि", 3 le "x" le 10):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(2"x""," " यदि", "x" < 0),(0"," " यदि", 0 le "x" le 1),(4"x" "," " यदि", "x" > 1):}`
a और b के उन मानों को ज्ञात कीजिए। जिनके लिए `f(x)= {(ax + 1, "यदि" x<= 3),(bx + 3, "यदि" x > 3):}` द्वारा परिभाषित फलन x = 3 पर संतत है।
दर्शाइए कि g(x) = x - [x] द्वारा परिभाषित फलन समस्त पूर्णांक बिंदुओं पर असंतत है। यहाँ [x] उस महत्तम पूर्णाक निरूपित करता है, जो x के बराबर या x से कम है।
cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।
f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:
`"f"("x") = {("sin x" - "cos x""," " यदि" "x" ne 0),(-1"," " यदि" "x" = 0):}`
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि" "x" ne pi/2),(3"," " यदि" "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx"^2"," " यदि" "x" le 2),(3"," " यदि" "x" > 2):}` द्वारा परिभाषित फलन x = 2 पर
दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।
दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।
यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1` है तो `dy/dx` ज्ञात कीजिए।
यदि - 1 < x < 1 के लिए `xsqrt(1 + y) + y sqrt(1 + x) = 0` है तो सिद्ध कीजिए की `dy/dx = - 1/(1 + x)^2`.
यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।