Advertisements
Advertisements
Question
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(2"x""," " यदि", "x" < 0),(0"," " यदि", 0 le "x" le 1),(4"x" "," " यदि", "x" > 1):}`
Solution
`"f"("x") = {(2"x""," " यदि", "x" < 0),(0"," " यदि", 0 le "x" le 1),(4"x" "," " यदि", "x" > 1):}`
x < 0, के लिए f(x) = 2x;
0 < x < 1, f(x) = 0 तथा
x > 1, f(x) = 4 x एक बहुपद और सतत फलन है।
इसलिए यह फलन है।
x = 0 पर,
`lim_(x -> 0^-) f(x) = lim_(x -> 0^-)` (2 x)
= `lim_(h -> 0)` [2 (0 - h)]
= `lim_(h -> 0)` (-2h)
= - 2 × 0
= 0
`lim_(x -> 0^+) f(x) = lim_(x -> 0^+)` (0) = 0
अत: x = 0 पर f संतत है।
x = 1 पर,
`lim_(x -> 1^-) f(x) = lim_(x -> 1^-)` (0) = 0
`lim_(x -> 1^+) f(x) = lim_(x -> 1^+)` (4x)
= `lim_(h -> 0)` [4 (1 + h)]
= `lim_(h -> 0)` (4 + 4h)
= 4 + 4 × 0
= 4
अत: x = 1 पर संतत नहीं है।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।
x = 3 पर फलन f(x) = 2x2 - 1 के सातत्य की जाँच कीजिए।
सिद्ध कीजिए कि फलन f(x) = xn, x = n, पर संतत है, जहाँ n एक धन पूर्णांक है।
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = x - 5
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= 1/(x - 5), x ne 5`
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = `abs (x - 5)`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(2x + 3, "यदि" x<=2),(2x - 3, "यदि" x > 2):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|+3, "यदि" x<= -3),(-2x, "यदि" -3 < x < 3),(6x + 2, "यदि" x >= 3):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|/x , "यदि" x != 0),(0, "यदि" x = 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x+1, "यदि" x>=1),(x^2+1, "यदि" x < 1):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(x^3 - 3, "यदि" x <= 2),(x^2 + 1, "यदि" x > 2):}`
क्या `f (x) = {(x+5, "यदि" x<=1),(x - 5, "यदि" x > 1):}` द्वारा परिभाषित फलन, एक संतत फलन है?
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x. cos x
cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।
f के सभी असांतत्य के बिंदुओं को ज्ञात कीजिए, जहाँ `f (x) = {(sinx/x, "यदि" x<0),(x + 1, "यदि" x >= 0):}`
निर्धारित कीजिए कि फलन f, `"f"("x") = {("x"^2 "sin" 1/"x""," " यदि" "x" ne 0),(0"," " यदि" "x" = 0):}` द्वारा परिभाषित एक संतत फलन है।
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि" "x" ne pi/2),(3"," " यदि" "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx"^2"," " यदि" "x" le 2),(3"," " यदि" "x" > 2):}` द्वारा परिभाषित फलन x = 2 पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx" + 1"," " यदि" x le 5),(3x - 5"," " यदि" x > 5):}` द्वारा परिभाषित फलन x = 5 पर
a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि" x le 2),("a"x + "b""," " यदि" 2 < x < 10),(21"," " यदि" x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।
दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।
यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1` है तो `dy/dx` ज्ञात कीजिए।