English

In ∆Abc, D and E Are Points on Sides Ab and Ac Respectively Such that Ad ✕ Ec = Ae ✕ Db. Prove that De || Bc. - Mathematics

Advertisements
Advertisements

Question

In ∆ABC, D and E are points on sides AB and AC respectively such that AD ✕ EC = AE ✕ DB. Prove that DE || BC.

Sum

Solution

Given: In Δ ABC, D and E are points on sides AB and AC such that `ADxxECxxAExxDB`

To Prove:  DE||BC

Proof:

Since  `ADxxECxxAExxDB`

`⇒ (DB)/(AD)=(EC)/(AE)`

`⇒ (DB)/(AD)+1=(EC)/(AE)+1`

`⇒ (DB+AD)/(AD)=(EC+AE)/(AE)`

`⇒ (AB)/(AD)=(AC)/(AE)`

∴ DE || BC             (Converse of basic proportionality theorem)

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.8 [Page 126]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.8 | Q 15 | Page 126

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×