Advertisements
Advertisements
Question
In ΔABC, the mid-points of AB, BC and AC are P, Q and R respectively. Prove that BQRP is a parallelogram and that its area is half of ΔABC.
Solution
Since P and R are mid-points of AB and AC respectively.
Therefore, PR || BC and PR = `(1)/(2)"BC"` ...........(i)
Also Q is mid-point of BC,
⇒ QC = `(1)/(2)"BC"` ...........(ii)
From (i) and (ii)
PR || BC and PR = QC
⇒ PR || QC and PR = QC ..........(iii)
Similarly Q and R are mid-point of BC and AC respectively
Therefore, QR || BP and QR = BP ..........(iv)
⇒ PQ is a digonal of ||gm BQRP
ar(ΔPQR) = ar(ΔBQP) ....(v) (diagonal of a ||gm divides it into two triangles of equal areas)
Similarly QCRP and QRAP are || gm and
ar(ΔPQR) = ar(ΔQCR) = ar(ΔAPR) ..........(vi)
From (v) and (vi)
ar(ΔPQR) = ar(ΔBQP) = ar(ΔQCR) = ar(ΔAPR)
Now,
ar(ΔABC) = ar(ΔPQR) + ar(ΔBQP) + ar(ΔQCR) + ar(ΔAPR)
⇒ ar(ΔABC) = 4ar(ΔPQR)
⇒ ar(ΔPQR) = `(1)/(4)"ar(ΔABC)"` ..........(vii)
ar(||gm BQRP) = ar(ΔPQR) + ar(ΔBQP)
⇒ ar(||gm BQRP) = ar(ΔPQR) + ar(ΔPQR) ...(from(v))
⇒ ar(||gm BQRP) = 2ar(ΔPQR)
⇒ ar(||gm BQRP) = `2 xx (1)/(4)"ar(ΔABC)"` ...(from(vii))
⇒ ar(||gm BQRP) = `(1)/(2)"ar(ΔABC)"`.
APPEARS IN
RELATED QUESTIONS
ABCD is a rectangle with ∠ADB = 55°, calculate ∠ABD.
Prove that if the diagonals of a parallelogram are equal then it is a rectangle.
PQRS is a parallelogram. T is the mid-point of RS and M is a point on the diagonal PR such that MR = `(1)/(4)"PR"`. TM is joined and extended to cut QR at N. Prove that QN = RN.
In a parallelogram PQRS, M and N are the midpoints of the opposite sides PQ and RS respectively. Prove that
RN and RM trisect QS.
In a parallelogram PQRS, M and N are the midpoints of the opposite sides PQ and RS respectively. Prove that
PMRN is a parallelogram.
In the given figure, PQRS is a trapezium in which PQ ‖ SR and PS = QR. Prove that: ∠PSR = ∠QRS and ∠SPQ = ∠RQP
Prove that the diagonals of a square are equal and perpendicular to each other.
Prove that the diagonals of a parallelogram divide it into four triangles of equal area.
The diagonals AC and BC of a quadrilateral ABCD intersect at O. Prove that if BO = OD, then areas of ΔABC an ΔADC area equal.
In the given figure, AB ∥ SQ ∥ DC and AD ∥ PR ∥ BC. If the area of quadrilateral ABCD is 24 square units, find the area of quadrilateral PQRS.