English

In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC. - Mathematics

Advertisements
Advertisements

Question

In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.

Solution

Let perpendicular bisector of side BC and angle bisector of ∠A meet at point D. Let the perpendicular bisector of side BC intersect it at E.

Perpendicular bisector of side BC will pass through circumcentre O of the circle. ∠BOC and ∠BAC are the angles subtended by arc BC at the centre and a point A on the remaining part of the circle respectively. We also know that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

∠BOC = 2 ∠BAC = 2 ∠A ... (1)

In ΔBOE and ΔCOE,

OE = OE (Common)

OB = OC (Radii of same circle)

∠OEB = ∠OEC (Each 90° as OD ⊥ BC)

∴ ΔBOE ≅ ∠COE (RHS congruence rule)

∠BOE = ∠COE (By CPCT) ... (2)

However, ∠BOE + ∠COE = ∠BOC

⇒ ∠BOE +∠BOE = 2 ∠A [Using equations (1) and (2)]

⇒ 2 ∠BOE = 2 ∠A

⇒ ∠BOE = ∠A

∴ ∠BOE = ∠COE = ∠A

The perpendicular bisector of side BC and angle bisector of ∠A meet at point D.

∴ ∠BOD = ∠BOE = ∠A ... (3)

Since AD is the bisector of angle ∠A,

∠BAD = ∠A/2

⇒ 2 ∠BAD = ∠A ... (4)

From equations (3) and (4), we obtain

∠BOD = 2 ∠BAD

This can be possible only when point BD will be a chord of the circle. For this, the point D lies on the circum circle.

Therefore, the perpendicular bisector of side BC and the angle bisector of ∠A meet on the circum circle of triangle ABC.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Circles - Exercise 10.6 [Page 186]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 10 Circles
Exercise 10.6 | Q 10 | Page 186

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×