English

If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal. - Mathematics

Advertisements
Advertisements

Question

If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal.

Sum

Solution

Given: Let ABCD be a cyclic quadrilateral and AD = BC.

Join AC and BD.

To prove: AC = BD

Proof: In ΔAOD and ΔBOC,

∠OAD = ∠OBC and ∠ODA = ∠OCB  ...[Since, same segments subtends equal angle to the circle]

AB = BC  ...[Given]

ΔAOD = ΔBOC  ...[By ASA congruence rule]

Adding is DOC on both sides, we get

ΔAOD + ΔDOC ≅ ΔBOC + ΔDOC

⇒ ΔADC ≅ ΔBCD

AC = BD  ...[By CPCT]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Circles - Exercise 10.3 [Page 104]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 10 Circles
Exercise 10.3 | Q 12. | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see the given figure). Prove that ∠ACP = ∠QCD.


ABC and ADC are two right triangles with common hypotenuse AC. Prove that ∠CAD = ∠CBD.


Prove that the circle drawn with any side of a rhombus as diameter passes through the point of intersection of its diagonals.


In the figure, `square`ABCD is a cyclic quadrilateral. Seg AB is a diameter. If ∠ ADC = 120˚, complete the following activity to find measure of ∠ BAC.

`square` ABCD is a cyclic quadrilateral.
∴ ∠ ADC + ∠ ABC = 180°
∴ 120˚ + ∠ ABC = 180°
∴ ∠ ABC = ______
But ∠ ACB = ______  .......(angle in semicircle)

In Δ ABC,
∠ BAC + ∠ ACB + ∠ ABC = 180°
∴ ∠BAC + ______ = 180°
∴ ∠ BAC = ______


In the given figure, ∠BAD = 78°, ∠DCF = x° and ∠DEF = y°. Find the values of x and y


ABCD is a cyclic quadrilateral in  ∠DBC = 80° and ∠BAC = 40°. Find ∠BCD.


ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that AD || BC . 


In the given figure, ABCD is a cyclic quadrilateral in which ∠BAD = 75°, ∠ABD = 58° and ∠ADC = 77°, AC and BD intersect at P. Then, find ∠DPC.


ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and ∠ADC = 140º, then ∠BAC is equal to ______.


ABCD is a cyclic quadrilateral such that ∠A = 90°, ∠B = 70°, ∠C = 95° and ∠D = 105°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×