English

In the figure, c ABCD is a cyclic quadrilateral. Seg AB is a diameter. If ∠ ADC = 120˚, complete the following activity to find measure of ∠ BAC. □ ABCD is a cyclic quadrilateral. - Geometry Mathematics 2

Advertisements
Advertisements

Question

In the figure, `square`ABCD is a cyclic quadrilateral. Seg AB is a diameter. If ∠ ADC = 120˚, complete the following activity to find measure of ∠ BAC.

`square` ABCD is a cyclic quadrilateral.
∴ ∠ ADC + ∠ ABC = 180°
∴ 120˚ + ∠ ABC = 180°
∴ ∠ ABC = ______
But ∠ ACB = ______  .......(angle in semicircle)

In Δ ABC,
∠ BAC + ∠ ACB + ∠ ABC = 180°
∴ ∠BAC + ______ = 180°
∴ ∠ BAC = ______

Sum

Solution

`square` ABCD is a cyclic quadrilateral.
∴ ∠ ADC + ∠ ABC = 180°
∴ 120 + ∠ ABC = 180°
∴ ∠ABC = 60°
But ∠ ACB = 90° ................... (Angle in semicircle)
In Δ ABC,
∠ BAC + ∠ ACB + ∠ ABC = 180°

∴ ∠ BAC + 90°+ 60° = 180°
∴ ∠ BAC + 150° = 180°
∴ ∠ BAC = 180°- 150°
∴ ∠ BAC = 30°

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Balbharati Model Question Paper Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that "Opposite angles of a cyclic quadrilateral are supplementary".


ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC = 70°, ∠BAC is 30°, find ∠BCD. Further, if AB = BC, find ∠ECD.


If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.


Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.


Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.


AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters; (ii) ABCD is a rectangle.


In the figure m(arc LN) = 110°,
m(arc PQ) = 50° then complete the following activity to find ∠LMN.
∠ LMN = `1/2` [m(arc LN) - _______]
∴ ∠ LMN = `1/2` [_________ - 50°]
∴ ∠ LMN = `1/2` ×  _________
∴ ∠ LMN = __________


ABCD is a cyclic quadrilateral in  BC || AD, ∠ADC = 110° and ∠BAC = 50°. Find ∠DAC.


Circles are described on the sides of a triangle as diameters. Prove that the circles on any two sides intersect each other on the third side (or third side produced).


ABCD is a cyclic trapezium with AD || BC. If ∠B = 70°, determine other three angles of the trapezium.


In the given figure, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If ∠DBC = 55° and ∠BAC = 45°, find ∠BCD.


Prove that the perpendicular bisectors of the sides of a cyclic quadrilateral are concurrent.


Prove that the centre of the circle circumscribing the cyclic rectangle ABCD is the point of intersection of its diagonals.


ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that  EB = EC


In the given figure, ABCD is a cyclic quadrilateral in which ∠BAD = 75°, ∠ABD = 58° and ∠ADC = 77°, AC and BD intersect at P. Then, find ∠DPC.


ABCD is a cyclic quadrilateral such that ∠A = 90°, ∠B = 70°, ∠C = 95° and ∠D = 105°.


If P, Q and R are the mid-points of the sides BC, CA and AB of a triangle and AD is the perpendicular from A on BC, prove that P, Q, R and D are concyclic.


If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×