Advertisements
Advertisements
Question
Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
Solution
In ΔAOD and ΔCOE,
OA = OC (Radii of the same circle)
OD = OE (Radii of the same circle)
AD = CE (Given)
∴ ΔAOD ≅ ΔCOE (SSS congruence rule)
∠OAD = ∠OCE (By CPCT) ... (1)
∠ODA = ∠OEC (By CPCT) ... (2)
Also,
∠OAD = ∠ODA (As OA = OD) ... (3)
From equations (1), (2), and (3), we obtain
∠OAD = ∠OCE = ∠ODA = ∠OEC
Let ∠OAD = ∠OCE = ∠ODA = ∠OEC = x
In Δ OAC,
OA = OC
∴ ∠OCA = ∠OAC (Let a)
In Δ ODE,
OD = OE
∠OED = ∠ODE (Let y)
ADEC is a cyclic quadrilateral.
∴ ∠CAD + ∠DEC = 180° (Opposite angles are supplementary)
x + a + x + y = 180°
2x + a + y = 180°
y = 180º − 2x − a ... (4)
However, ∠DOE = 180º − 2y
And, ∠AOC = 180º − 2a
∠DOE − ∠AOC = 2a − 2y = 2a − 2 (180º − 2x − a)
= 4a + 4x − 360° ... (5)
∠BAC + ∠CAD = 180º (Linear pair)
⇒ ∠BAC = 180º − ∠CAD = 180º − (a + x)
Similarly, ∠ACB = 180º − (a + x)
In ΔABC,
∠ABC + ∠BAC + ∠ACB = 180º (Angle sum property of a triangle)
∠ABC = 180º − ∠BAC − ∠ACB
= 180º − (180º − a − x) − (180º − a −x)
= 2a + 2x − 180º
= 1/2[4a + 4x − 360°]
∠ABC = 1/2[∠DOE − ∠ AOC] [Using equation (5)]
APPEARS IN
RELATED QUESTIONS
ABC and ADC are two right triangles with common hypotenuse AC. Prove that ∠CAD = ∠CBD.
Prove that a cyclic parallelogram is a rectangle.
Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters; (ii) ABCD is a rectangle.
The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?
ABCD is a cyclic quadrilateral in ∠DBC = 80° and ∠BAC = 40°. Find ∠BCD.
ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that AD || BC .
ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and ∠ADC = 140º, then ∠BAC is equal to ______.
ABCD is a cyclic quadrilateral such that ∠A = 90°, ∠B = 70°, ∠C = 95° and ∠D = 105°.
If P, Q and R are the mid-points of the sides BC, CA and AB of a triangle and AD is the perpendicular from A on BC, prove that P, Q, R and D are concyclic.