English

In figure, line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and ∠AEF = ∠AFE. Prove that BDCD=BFCE. - Mathematics

Advertisements
Advertisements

Question

In figure, line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and ∠AEF = ∠AFE. Prove that `(BD)/(CD) = (BF)/(CE)`.

Sum

Solution

Given ΔABC, E is the mid-point of CA and ∠AEF = ∠AFE

To prove: `("BD")/("CD") = ("BF")/("CE")` 

Construction: Take a point G on AB such that CG || EF

Proof: Since, E is the mid-point of CA


∴ CE = AE   ...(i)

In ΔACG,

CG || EF and E is mid-point of CA

So, CE = GF   ...(ii) [By mid-point theorem] 

Now, In ΔBCG and ΔBDF,

CG || EF

∴ `("BC")/("CD") = ("BG")/("GF")` ...[By basic proportionality theorem]

⇒ `("BC")/("CD") = ("BF" - "GF")/("GF")`

⇒ `("BC")/("CD") = ("BF")/("GF") - 1`

⇒ `("BC")/("CD") + 1 = ("BF")/("CE")`  ...[From equation (ii)]

⇒ `("BC" + "CD")/("CD") = ("BF")/("CE")`

⇒ `("BD")/("CD") = ("BF")/("CE")`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Triangles - Exercise 6.4 [Page 75]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 6 Triangles
Exercise 6.4 | Q 16 | Page 75

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If `"AD"/"DB"=3/4` and AC = 15 cm, find AE


D and E are points on the sides AB and AC respectively of a ΔABC such that DE║BC.
If AD = 3.6cm, AB = 10cm and AE = 4.5cm, find EC and AC.


D and E are points on the sides AB and AC respectively of a ΔABC such that DE║BC. Find the value of x, when

AD = x cm, DB = (x – 2) cm, AE = (x + 2) cm and EC = (x – 1) cm. 


D and E are points on the sides AB and AC respectively of a ΔABC such that DE║BC. Find the value of x, when

AD = (7x – 4) cm, AE = (5x – 2) cm, DB = (3x + 4) cm and EC = 3x cm.


In the given figure, side BC of a ΔABC is bisected at D
and O is any point on AD. BO and CO produced meet
AC and AB at E and F respectively, and AD is
produced to X so that D is the midpoint of OX.
Prove that AO : AX = AF : AB and show that EF║BC. 

 

 


An aeroplane leaves an airport and flies due north at a speed of 1000km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after` 1 1/2`  hours?


In triangle BMP and CNR it is given that PB= 5 cm, MP = 6cm BM = 9 cm and NR = 9cm. If ΔBMP∼ ΔCNR then find the perimeter of ΔCNR


In the given figure, in ∆ABC, point D on side BC is such that, ∠BAC = ∠ADC. Prove that, CA2 = CB × CD 


Draw an isosceles triangle with base 5 cm and height 4 cm. Draw a triangle similar to the triangle drawn whose sides are `2/3` times the sides of the triangle.


A line is parallel to one side of triangle which intersects remaining two sides in two distinct points then that line divides sides in same proportion.

Given: In ΔABC line l || side BC and line l intersect side AB in P and side AC in Q.

To prove: `"AP"/"PB" = "AQ"/"QC"`

Construction: Draw CP and BQ

Proof: ΔAPQ and ΔPQB have equal height.

`("A"(Δ"APQ"))/("A"(Δ"PQB")) = (["______"])/"PB"`   .....(i)[areas in proportion of base]

`("A"(Δ"APQ"))/("A"(Δ"PQC")) = (["______"])/"QC"`  .......(ii)[areas in proportion of base]

ΔPQC and ΔPQB have [______] is common base.

Seg PQ || Seg BC, hence height of ΔAPQ and ΔPQB.

A(ΔPQC) = A(Δ______)    ......(iii)

`("A"(Δ"APQ"))/("A"(Δ"PQB")) = ("A"(Δ "______"))/("A"(Δ "______"))`   ......[(i), (ii), and (iii)]

`"AP"/"PB" = "AQ"/"QC"`   .......[(i) and (ii)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×