English

In the following figure, PQ and PR are tangents to the circle, with centre O. If ∠QPR = 60°, calculate: ∠QOR, ∠OQR, ∠QSR. - Mathematics

Advertisements
Advertisements

Question

In the following figure, PQ and PR are tangents to the circle, with centre O. If `∠`QPR = 60°, calculate:

  1. ∠QOR,
  2. ∠OQR,
  3. ∠QSR.

Sum

Solution


Join QR.

i. In quadrilateral ORPQ,

OQ ⊥ OP, OR ⊥ RP

∴ ∠OQP = 90°, ∠ORP = 90°, ∠QPR = 60°

∠QOR = 360° – (90° + 90° + 60°)

∠QOR = 360° – 240°

∠QOR = 120°

ii. In ΔQOR,

OQ = QR  ...(Radii of the same circle)

∴ ∠OQR = ∠QRO  ...(i)

But, ∠OQR + ∠QRO + ∠QOR = 180°

∠OQR + ∠ QRO + 120° = 180°

∠OQR + ∠QRO = 60°

From (i)

2∠OQR = 60°

∠OQR = 30°

iii. Now arc RQ subtends ∠QOR at the centre and ∠QSR at the remaining part of the circle.

∴ `∠QSR = 1/2 ∠QOR`

`=> ∠QSR = 1/2 xx 120^circ`

`=>` ∠QSR = 60°

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Tangents and Intersecting Chords - Exercise 18 (A) [Page 275]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 18 Tangents and Intersecting Chords
Exercise 18 (A) | Q 18.1 | Page 275
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×