English

In the given figure, AB = DB and Ac = DC. If ∠ ABD = 58o,∠ DBC = (2x - 4)o,∠ ACB = y + 15o and∠ DCB = 63o ; find the values of x and y. - Mathematics

Advertisements
Advertisements

Question

In the given figure, AB = DB and Ac = DC.


If ∠ ABD = 58o,
∠ DBC = (2x - 4)o,
∠ ACB = y + 15o and
∠ DCB = 63o ; find the values of x and y.

Sum

Solution

Given:
In the figure AB = DB, AC = DC, ∠ABD =  58°,
∠DBC = ( 2x - 4 )°, ∠ACB = ( y +15)° and ∠DCB = 63°
We need to find the values of x and y. 

In ΔABC and ΔDBC
AB = DB              ...[ Given ]
AC= DC               ...[ Given ]
BC= BC                ...[ common ]
∴ By Side-SIde-Side criterion of congruence, we have,
ΔABC ≅ ΔDBC
The corresponding parts of the congruent triangles are congruent.
∴ ∠ABC= DCB       ...[ c. p. c .t ]
⇒ y° + 15° = 63° 
⇒ y° = 63° - 15°  
⇒ y° = 48°  
and ∠ABC =∠DBC  ...[ c.p.c.t ]
But, ∠DBC = ( 2x  - 4)°  
We have ∠ABC + ∠DBC = ∠ABD
⇒ (2x  - 4)° + (2x - 4)°  = 58°  
⇒  4x - 8°= 58°
⇒  4x = 58° + 8°
⇒  4x = 66°
⇒  X = ` 66°/(4)`
⇒  X = 16.5°
Thus the values of x and y are :
x = 16.5°  and y = 48°

shaalaa.com
Criteria for Congruence of Triangles
  Is there an error in this question or solution?
Chapter 9: Triangles [Congruency in Triangles] - Exercise 9 (A) [Page 122]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 9 Triangles [Congruency in Triangles]
Exercise 9 (A) | Q 10 | Page 122
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×