Advertisements
Advertisements
प्रश्न
In the given figure, AB = DB and Ac = DC.
If ∠ ABD = 58o,
∠ DBC = (2x - 4)o,
∠ ACB = y + 15o and
∠ DCB = 63o ; find the values of x and y.
उत्तर
Given:
In the figure AB = DB, AC = DC, ∠ABD = 58°,
∠DBC = ( 2x - 4 )°, ∠ACB = ( y +15)° and ∠DCB = 63°
We need to find the values of x and y.
In ΔABC and ΔDBC
AB = DB ...[ Given ]
AC= DC ...[ Given ]
BC= BC ...[ common ]
∴ By Side-SIde-Side criterion of congruence, we have,
ΔABC ≅ ΔDBC
The corresponding parts of the congruent triangles are congruent.
∴ ∠ABC= DCB ...[ c. p. c .t ]
⇒ y° + 15° = 63°
⇒ y° = 63° - 15°
⇒ y° = 48°
and ∠ABC =∠DBC ...[ c.p.c.t ]
But, ∠DBC = ( 2x - 4)°
We have ∠ABC + ∠DBC = ∠ABD
⇒ (2x - 4)° + (2x - 4)° = 58°
⇒ 4x - 8°= 58°
⇒ 4x = 58° + 8°
⇒ 4x = 66°
⇒ X = ` 66°/(4)`
⇒ X = 16.5°
Thus the values of x and y are :
x = 16.5° and y = 48°
APPEARS IN
संबंधित प्रश्न
Which congruence criterion do you use in the following?
Given: EB = DB
AE = BC
∠A = ∠C = 90°
So, ΔABE ≅ ΔCDB
In Fig. 10.99, AD ⊥ CD and CB ⊥. CD. If AQ = BP and DP = CQ, prove that ∠DAQ = ∠CBP.
Which of the following statements are true (T) and which are false (F):
If any two sides of a right triangle are respectively equal to two sides of other right triangle, then the two triangles are congruent.
In the given figure, ABC is an isosceles triangle whose side AC is produced to E. Through C, CD is drawn parallel to BA. The value of x is
The given figure shows a circle with center O. P is mid-point of chord AB.
Show that OP is perpendicular to AB.
The following figure shows a circle with center O.
If OP is perpendicular to AB, prove that AP = BP.
In a triangle ABC, D is mid-point of BC; AD is produced up to E so that DE = AD. Prove that:
AB is parallel to EC.
From the given diagram, in which ABCD is a parallelogram, ABL is a line segment and E is mid-point of BC.
Prove that:
(i) ΔDCE ≅ ΔLBE
(ii) AB = BL.
(iii) AL = 2DC
From the given diagram, in which ABCD is a parallelogram, ABL is a line segment and E is mid-point of BC.
Prove that: AB = BL.
ABC is an isosceles triangle with AB = AC and BD and CE are its two medians. Show that BD = CE.