English

Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range. - Mathematics

Advertisements
Advertisements

Question

Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.

Sum

Solution

The relation R from A to A is given as

R = {(x, y): 3x – y = 0, where x, y ∈ A}

i.e., R = {(x, y): 3x = y, where x, y ∈ A}

= {(x, 3x), where x, 3x ∈ A}

∴ R = {(1, 3), (2, 6), (3, 9), (4, 12)}

`[∵ 1 ≤ 3x ≤ 14, ∴ 1/3 ≤ x ≤ 14/3 ⇒ x = 1, 2, 3, 4]`

The domain of R is the set of all first elements of the ordered pairs in the relation.

∴Domain of R = {1, 2, 3, 4}

The whole set A is the codomain of the relation R.

∴ Codomain of R = A = {1, 2, 3, …, 14}

The range of R is the set of all second elements of the ordered pairs in the relation.

∴Range of R = {3, 6, 9, 12}

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations and Functions - Exercise 2.2 [Page 35]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 2 Relations and Functions
Exercise 2.2 | Q 1 | Page 35

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The given figure shows a relationship between the sets P and Q. Write this relation

  1. in set-builder form.
  2. in roster form.

What is its domain and range?


Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.

 

Let A = {ab}. List all relations on A and find their number.

 

Define a relation R on the set N of natural number by R = {(xy) : y = x + 5, x is a natural number less than 4, xy ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N

(iii) (ab) R (cd) and (cd) R (ef) ⇒ (ab) R (ef) for all (ab), (cd), (ef) ∈ N × N

 

If R is a relation defined on the set Z of integers by the rule (xy) ∈ R ⇔ x2 + y2 = 9, then write domain of R.


Let R = [(xy) : xy ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.


Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(xy) : x − yis odd}. Write R in roster form. 


If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is


A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is


Let R be a relation from a set A to a set B, then


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∩ C) = (A × B) ∩ (A × C)


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)


Write the relation in the Roster Form. State its domain and range

R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}


Identify which of if the following relations are reflexive, symmetric, and transitive.

Relation Reflexive Symmetric Transitive
R = {(a, b) : a, b ∈ Z, a – b is an integer}      
R = {(a, b) : a, b ∈ N, a + b is even} x
R = {(a, b) : a, b ∈ N, a divides b}      
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0}      
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls}      
R = {(a, b) : Line a is perpendicular to line b in a plane}      
R = {(a, b) : a, b ∈ R, a < b}      
R = {(a, b) : a, b ∈ R, a ≤ b3}      

Select the correct answer from given alternative

If A = {a, b, c} The total no. of distinct relations in A × A is


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R2 = {(1, 5), (2, 4), (3, 6)}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the members of a family. The relation R defined by “aRb if a is not a sister of b”


Discuss the following relation for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence


Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


Choose the correct alternative:

The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?


Choose the correct alternative:

Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Choose the correct alternative:

Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)}. Then R is


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Is the given relation a function? Give reasons for your answer.

t = {(x, 3) | x is a real number


If R = {(x, y): x, y ∈ Z, x2 + 3y2 ≤ 8} is a relation on the set of integers Z, then the domain of R–1 is ______.


Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×