English

M is a Point on the Side Bc of a Parallelogram Abcd. Dm When Produced Meets Ab Produced at N. Prove That (1)` (Dm)/(Mn)=(Dc)/(Bn)` (2)` (Dn)/(Dm)=(An)/(Dc)` - Mathematics

Advertisements
Advertisements

Question

M is a point on the side BC of a parallelogram ABCD. DM when produced meets AB produced at N. Prove that  

(1)` (DM)/(MN)=(DC)/(BN)` 

(2)` (DN)/(DM)=(AN)/(DC)` 

 

Solution

(i) Given: ABCD is a parallelogram 

To prove : 

(1)`(DM)/(MN)=(DC)/(BN)` 

(2) `(DN)/(DM)=(AN)/(DC)` 

Proof: In Δ DMC and Δ NMB
∠DMC = ∠NMB (Vertically opposite angle)
∠DCM = ∠NBM (Alternate angles)  

By AAA- Similarity
ΔDMC ~ ΔNMB 

∴`( DM)/(MN)=(DC)/(BM)` 

NOW, `(MN)/(DM)+(BN)/(DC)`

Adding 1 to both sides, we get 

`(MN)/(DM)+1=(BN)/(DC)+1` 

⟹ `(MN+DM)/(DM)=(BN+DC)/(DC)` 

⟹ `(MN+DM)/(DM)=(BN+AB)/(DC)` [∵ ABCD is a parallelogram]   

⟹ `(DN)/(DM)=(AN)/(DC)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Triangles - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 4 Triangles
Exercises 1 | Q 5

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×