Advertisements
Advertisements
Question
निम्नलिखित समीकरण को सरल कीजिए:
`2tan^-1(cosx) = tan^-1(2cosecx)`
Solution
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
`=> tan^(-1) ((2 cos x)/(1- cos^2 x)) = tan^(1) (2 cosec x)` `[2 tan^(-1) x = tan^(-1) (2x)/(1-x)]`
`=> (2 cos x)/(1 - cos^2 x) = 2 cosec x`
`=> (2 cos x)/(sin^2 x) = 2/sin x`
=> cos x = sin x
=> tan x = 1
`:. x = pi/4`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"sec"^-1 (2/sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cot" ^-1 (sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/sqrt2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (- sqrt2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (1/2) + 2 "sin"^-1 (1/2)`
यदि `sin^-1 x = y,` तो
`"tan"^-1 sqrt 3 - "sec"^-1 (-2)` का मान बराबर है
निम्नलिखित के मान ज्ञात कीजिए:
`cos^-1(cos (13pi)/6)`
सिद्ध कीजिए:
`sin^-1 8/17 + sin^-1 3/5 = tan^-1 77/36`
सिद्ध कीजिए:
`cos^-1 4/5 + cos^-1 12/13 = cos^-1 33/65`
सिद्ध कीजिए:
`cos^-1 12/13 + sin^-1 3/5 = sin^-1 56/65`
सिद्ध कीजिए:
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
सिद्ध कीजिए:
`tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/3 + tan^-1 1/8 = pi/4`
सिद्ध कीजिए:
`tan^-1 sqrtx = 1/2 cos^-1((1 - x)/(1 + x))`, x ∈ [0, 1]
sin(tan-1x), |x| < 1 बराबर होता है:
सिद्ध कीजिए:
`tan^-1((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2cos^-1x, -1/sqrt2 ≤ x ≤ 1`
[संकेत: x = cos 2θ रखिए]
सिद्ध कीजिए:
`(9pi)/8 - 9/4 sin^-1 1/3 = 9/4 sin^-1 (2sqrt2)/3`
निम्नलिखित समीकरण को सरल कीजिए:
`tan^-1 (1 - x)/(1 + x) = 1/2 tan^-1x, (x > 0)`
`tan^-1(x/y) - tan^-1 (x - y)/(x + y)` का मान है: