Advertisements
Advertisements
Question
सिद्ध कीजिए:
`tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/3 + tan^-1 1/8 = pi/4`
Solution
`tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/3 + tan^-1 1/8`
`= tan^-1 ((1/5 + 1/7)/(1 - 1/5 xx 1/7)) + tan^-1((1/8 + 1/3)/(1 - 1/8 xx 1/3))`
= `tan^-1 12/34 + tan^-1 11/23`
= `tan^-1((12/34 + 11/23)/(1 - 12/34 xx 11/23))`
= `tan^-1 650/650`
`= tan^-1(1)`
= `tan^-1(tan pi/4)`
`= pi/4`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"tan" ^-1 (-1)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cot" ^-1 (sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/sqrt2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (- sqrt2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (1/2) + 2 "sin"^-1 (1/2)`
`"tan"^-1 sqrt 3 - "sec"^-1 (-2)` का मान बराबर है
निम्नलिखित के मान ज्ञात कीजिए:
`cos^-1(cos (13pi)/6)`
निम्नलिखित के मान ज्ञात कीजिए:
`tan^-1(tan (7pi)/6)`
सिद्ध कीजिए:
`2sin^-1 3/5 = tan^-1 24/7`
सिद्ध कीजिए:
`cos^-1 4/5 + cos^-1 12/13 = cos^-1 33/65`
सिद्ध कीजिए:
`cos^-1 12/13 + sin^-1 3/5 = sin^-1 56/65`
सिद्ध कीजिए:
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
सिद्ध कीजिए:
`tan^-1 sqrtx = 1/2 cos^-1((1 - x)/(1 + x))`, x ∈ [0, 1]
सिद्ध कीजिए:
`cot^-1((sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))) = x/2, x ∈ (0, pi/4)`
सिद्ध कीजिए:
`(9pi)/8 - 9/4 sin^-1 1/3 = 9/4 sin^-1 (2sqrt2)/3`
निम्नलिखित समीकरण को सरल कीजिए:
`2tan^-1(cosx) = tan^-1(2cosecx)`
निम्नलिखित समीकरण को सरल कीजिए:
`tan^-1 (1 - x)/(1 + x) = 1/2 tan^-1x, (x > 0)`
यदि `sin^-1(1 - x) - 2sin^-1x = pi/2`, तो x का मान बराबर है:
`tan^-1(x/y) - tan^-1 (x - y)/(x + y)` का मान है: