English

With Usual Notations, in δAbc, Prove that A(B Cos C − C Cos B) = B2 − C2 - Mathematics and Statistics

Advertisements
Advertisements

Question

With usual notations, in ΔABC, prove that a(b cos C − c cos B) = b2 − c2

Solution

L.H.S. = a(b cos C − c cos B)

= R.H.S.

 

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (October)

APPEARS IN

RELATED QUESTIONS

In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`


In any ΔABC if  a2 , b2 , c2 are in arithmetic progression, then prove that Cot A, Cot B, Cot C are in arithmetic progression.


In a Δ ABC, with usual notations prove that:` (a -bcos C) /(b -a cos C )= cos B/ cos A`


In ΔABC, prove that `tan((A - B)/2) = (a - b)/(a + b)*cot  C/2`


In any ΔABC, with usual notations, prove that b2 = c2 + a2 – 2ca cos B.


If in ∆ABC with usual notations a = 18, b = 24, c = 30 then sin A/2 is equal to

(A) `1/sqrt5`

(B) `1/sqrt10`

(C) `1/sqrt15`

(D) `1/(2sqrt5)`


 In , ΔABC prove that 

`"sin"(("B" - "C")/2) = (("b" - "c")/"a") "cos"("A"/2)`                               


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(sqrt(2), pi/4)`


Find the Cartesian co-ordinates of the point whose polar co-ordinates are:

`(1/2, (7pi)/3)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(sqrt(2), sqrt(2))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(0, 1/2)`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(1, - sqrt(3))`


Find the polar co-ordinates of the point whose Cartesian co-ordinates are.

`(3/2, (3√3)/2)`.


Solve the triangle in which a = `(sqrt3 + 1)`, b = `(sqrt3 - 1)` and ∠C = 60°.


In any ΔABC, prove the following:

`("c" - "b cos A")/("b" - "c cos A") = ("cos B")/("cos C")`


In Δ ABC, if a, b, c are in A.P., then show that cot `"A"/2, cot  "B"/2, cot  "C"/2` are also in A.P.


In ΔABC, if `"cos A"/"a" = "cos B"/"b"`, then show that it is an isosceles triangle.


In Δ ABC, if sin2 A + sin2 B = sin2 C, then show that the triangle is a right-angled triangle.


In Δ ABC, prove that a2 (cos2 B - cos2 C) + b2 (cos2 C - cos2 A) + c2 (cos2 A - cos2 B) = 0.


With the usual notations, show that
(c2 − a2 + b2) tan A = (a2 − b2 + c2) tan B = (b2 − c2 + a2) tan C


Show that `(9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 sin^-1 ((2sqrt2)/3)`.


If sin `(sin^-1  1/5 + cos^-1 x) = 1`, then find the value of x.


State whether the following equation has a solution or not?

cos 2θ = `1/3`


Solve: `tan^-1 ("1 - x"/"1 + x") = 1/2 (tan^-1 "x")`, for x > 0.


In ∆ABC, prove that ac cos B − bc cos A = a2 − b2 


Find the polar co-ordinates of point whose Cartesian co-ordinates are `(1, sqrt(3))`


Find the Cartesian co-ordinates of point whose polar co-ordinates are `(4, pi/3)`


With usual notations, prove that `(cos "A")/"a" + (cos "B")/"b" + (cos "C")/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`


In ∆ABC, if a = 13, b = 14, c = 15, then find the value of cos B


In ∆ABC, if `(2cos "A")/"a" + (cos "B")/"b" + (2cos"C")/"c" = "a"/"bc" + "b"/"ca"`, then show that the triangle is a right angled


In ∆ABC, prove that `(cos^2"A" - cos^2"B")/("a" + "b") + (cos^2"B" - cos^2"C")/("b" + "c") + (cos^2"C" - cos^2"A")/("c" + "a")` = 0


In ΔABC, prove that `("a"^2sin("B" - "C"))/(sin"A") + ("b"^2sin("C" - "A"))/(sin"B") + ("c"^2sin("A" - "B"))/(sin"C")` = 0


In ΔABC, prove that `("b"^2 - "c"^2)/"a" cos"A" + ("c"^2 - "a"^2)/"b" cos"B" + ("a"^2 - "b"^2)/"c" cos "C"` = 0


In ∆ABC, if ∠A = `pi/2`, then prove that sin(B − C) = `("b"^2 - "c"^2)/("b"^2 + "c"^2)`


In ΔABC, a(cos2B + cos2C) + cos A(c cos C + b cos B) = ?


In a ΔABC, c2 sin 2B + b2 sin 2C = ?


In a triangle ABC, If `(sin "A" - sin "C")/(cos "C" - cos "A")` = cot B, then A, B, C are in ________.


If in a right-angled triangle ABC, the hypotenuse AB = p, then `overline"AB".overline" AC" + overline"BC".overline" BA" + overline" CA".overline"CB"` is equal to ______ 


In a ΔABC, `(sin  "C"/2)/(cos(("A" - "B")/2))` = ______ 


If `(- sqrt2, sqrt2)` are cartesian co-ordinates of the point, then its polar co-ordinates are ______.


The polar co-ordinates of P are `(2, pi/6)`. If Q is the image of P about the X-axis then the polar co-ordinates of Q are ______.


If cartesian co-ordinates of a point are `(1, -sqrt3)`, then its polar co-ordinates are ______ 


In ΔABC, a = 7cm, b = 3cm and c = 8 cm, then angle A is ______ 


In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______


The smallest angle of the ΔABC, when a = 7, b = `4sqrt(3)` and c = `sqrt(13)` is ______.


If in Δ ABC, 3a = b + c, then `cot ("B"/2) cot ("C"/2)` = ______.


In `triangleABC,` if a = 3, b = 4, c = 5, then sin 2B = ______.


If in ΔABC, `sin  "B"/2 sin  "C"/2 = sin  "A"/2` and 2s is the perimeter of the triangle, then s is ______.


In ΔABC, if `"a" cos^2  "C"/2 + "c" cos^2  "A"/2 = (3"b")/2`, then a, b, c are in ______.


If a = 13, b = 14, c = 15, then `cos("A"/2)` = ______.


Find the cartesian co-ordinates of the point whose polar co-ordinates are `(1/2, π/3)`.


In triangle ABC, a = 4, b = 3 and ∠A = 60°. If ' c' is a root of the equation c2 – 3c – k = 0. Then k = ______. (with usual notations)


In ΔABC with usual notations, if ∠A = 30° and a = 5, then `s/(sumsinA)` is equal to ______.


Let ABC be a triangle such that ∠A = 45°, ∠B = 75° then `"a" + "c"sqrt(2)` is equal to ______. (in usual notation)


In a triangle ABC, in usual notation, (a + b + c)(b + c – a) = λbc will be true if ______.


In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.


In ΔABC, with usual notations, if a, b, c are in A.P. Then `a cos^2 (C/2) + c cos^2(A/2)` = ______.


In ΔABC, `(a - b)^2 cos^2  C/2 + (a + b)^2 sin^2  C/2` is equal to ______.


The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.


In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.


If the angles A, B, C of a ΔABC are in A.P. and ∠A = 30°, c = 5, then find the values of ‘a’ and ‘b’.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×