English

NCERT Exemplar solutions for Physics [English] Class 12 chapter 3 - Current Electricity [Latest edition]

Advertisements

Chapters

NCERT Exemplar solutions for Physics [English] Class 12 chapter 3 - Current Electricity - Shaalaa.com
Advertisements

Solutions for Chapter 3: Current Electricity

Below listed, you can find solutions for Chapter 3 of CBSE NCERT Exemplar for Physics [English] Class 12.


MCQ I
MCQ I [Pages 16 - 21]

NCERT Exemplar solutions for Physics [English] Class 12 3 Current Electricity MCQ I [Pages 16 - 21]

MCQ I | Q 3.01 | Page 16

Consider a current carrying wire (current I) in the shape of a circle. Note that as the current progresses along the wire, the direction of j (current density) changes in an exact manner, while the current I remain unaffected. The agent that is essentially responsible for is ______.

  • source of emf.

  • electric field produced by charges accumulated on the surface of wire.

  • the charges just behind a given segment of wire which push them just the right way by repulsion.

  • the charges ahead.

MCQ I | Q 3.02 | Page 16

Two batteries of emf ε1 and ε22 > ε1) and internal resistances r1 and r2 respectively are connected in parallel as shown in figure.

  • The equivalent emf εeq of the two cells is between ε1 and ε2, i.e. ε1 < εeq < ε2.

  • The equivalent emf εeq is smaller than ε1.

  • The εeq is given by εeq = ε1 + ε2 always.

  • εeq is independent of internal resistances r1 and r2.

MCQ I | Q 3.03 | Page 17

A resistance R is to be measured using a meter bridge. Student chooses the standard resistance S to be 100Ω. He finds the null point at l1 = 2.9 cm. He is told to attempt to improve the accuracy. Which of the following is a useful way?

  • He should measure l1 more accurately.

  • He should change S to 1000Ω and repeat the experiment.

  • He should change S to 3Ω and repeat the experiment.

  • He should give up hope of a more accurate measurement with a meter bridge.

MCQ I | Q 3.04 | Page 17

Two cells of emf’s approximately 5V and 10V are to be accurately compared using a potentiometer of length 400 cm.

  • The battery that runs the potentiometer should have voltage of 8V.

  • The battery of potentiometer can have a voltage of 15V and R adjusted so that the potential drop across the wire slightly exceeds 10V.

  • The first portion of 50 cm of wire itself should have a potential drop of 10V.

  • Potentiometer is usually used for comparing resistances and not voltages.

MCQ I | Q 3.05 | Page 17

A metal rod of length 10 cm and a rectangular cross-section of 1 cm × `1/2` cm is connected to a battery across opposite faces. The resistance will be ______.

  • maximum when the battery is connected across 1 cm × `1/2` cm faces.

  • maximum when the battery is connected across 10 cm × `1/2` cm faces.

  • maximum when the battery is connected across 10 cm × `1/2` cm faces.

  • same irrespective of the three faces.

MCQ I | Q 3.06 | Page 17

Which of the following characteristics of electrons determines the current in a conductor?

  • Drift velocity alone

  • Thermal velocity alone

  • Both drift velocity and thermal velocity

  • Neither drift nor thermal velocity

MCQ I | Q 3.07 | Page 18

Kirchhoff’s junction rule is a reflection of ______.

  1. conservation of current density vector.
  2. conservation of charge.
  3. the fact that the momentum with which a charged particle approaches a junction is unchanged (as a vector) as the charged particle leaves the junction.
  4. the fact that there is no accumulation of charges at a junction.
  • b and c

  • a and c

  • b and d

  • c and d

MCQ I | Q 3.08 | Page 18

Consider a simple circuit shown in figure   stands for a variable resistance R′. R′ can vary from R0 to infinity. r is internal resistance of the battery (r << R << R0).

  1. Potential drop across AB is nearly constant as R ′ is varied.
  2. Current through R′ is nearly a constant as R ′ is varied.
  3. Current I depends sensitively on R′.
  4. `I ≥ V/(r + R)` always.
  • a and b

  • b and c

  • c and d

  • a and d

MCQ I | Q 3.09 | Page 18

Temperature dependence of resistivity ρ(T) of semiconductors, insulators and metals is significantly based on the following factors:

  1. number of charge carriers can change with temperature T.
  2. time interval between two successive collisions can depend on T.
  3. length of material can be a function of T.
  4. mass of carriers is a function of T.
  • a and b

  • b and c

  • c and d

  • a and c

MCQ I | Q 3.1 | Page 18

The measurement of an unknown resistance R is to be carried out using Wheatstones bridge (figure). Two students perform an experiment in two ways. The first students takes R2 = 10 Ω and R1 = 5 Ω. The other student takes R2 = 1000 Ω and R1 = 500 Ω. In the standard arm, both take R3 = 5 Ω. Both find R = `R_2/R_1 R_3` = 10 Ω within errors.

  1. The errors of measurement of the two students are the same.
  2. Errors of measurement do depend on the accuracy with which R2 and R1 can be measured.
  3. If the student uses large values of R2 and R1, the currents through the arms will be feeble. This will make determination of null point accurately more difficult.
  4. Wheatstone bridge is a very accurate instrument and has no errors of measurement.
  • a and b

  • b and c

  • c and d

  • a and d

MCQ I | Q 3.11 | Page 19

In a meter bridge the point D is a neutral point (Figure).

  1. The meter bridge can have no other neutral point for this set of resistances.
  2. When the jockey contacts a point on meter wire left of D, current flows to B from the wire.
  3. When the jockey contacts a point on the meter wire to the right of D, current flows from B to the wire through galvanometer.
  4. When R is increased, the neutral point shifts to left.
  • a and c

  • a and d

  • b and c

  • c and d

MCQ I | Q 3.12 | Page 19

Is the momentum conserved when charge crosses a junction in an electric circuit? Why or why not?

MCQ I | Q 3.13 | Page 19

The relaxation time τ is nearly independent of applied E field whereas it changes significantly with temperature T. First fact is (in part) responsible for Ohm’s law whereas the second fact leads to variation of ρ with temperature. Elaborate why?

MCQ I | Q 3.14 | Page 19

What are the advantages of the null-point method in a Wheatstone bridge? What additional measurements would be required to calculate `R_(unknown)` by any other method?

MCQ I | Q 3.15 | Page 19

What is the advantage of using thick metallic strips to join wires in a potentiometer?

MCQ I | Q 3.16 | Page 19

For wiring in the home, one uses Cu wires or Al wires. What considerations are involved in this?

MCQ I | Q 3.17 | Page 19

Why are alloys used for making standard resistance coils?

MCQ I | Q 3.18 | Page 19

Power P is to be delivered to a device via transmission cables having resistance RC. If V is the voltage across R and I the current through it, find the power wasted and how can it be reduced.

MCQ I | Q 3.19 | Page 19

AB is a potentiometer wire (Figure). If the value of R is increased, in which direction will the balance point J shift?

MCQ I | Q 3.2 | Page 20

While doing an experiment with potentiometer (Figure) it was found that the deflection is one sided and (i) the deflection decreased while moving from one end A of the wire to the end B; (ii) the deflection increased. while the jockey was moved towards the end B.

  1. Which terminal + or – ve of the cell E1, is connected at X in case (i) and how is E1 related to E?
  2. Which terminal of the cell E1 is connected at X in case (ii)?

MCQ I | Q 3.21 | Page 20

A cell of emf E and internal resistance r is connected across an external resistance R. Plot a graph showing the variation of P.D. across R, versus R.

MCQ I | Q 3.22 | Page 20

First a set of n equal resistors of R each are connected in series to a battery of emf E and internal resistance R. A current I is observed to flow. Then the n resistors are connected in parallel to the same battery. It is observed that the current is increased 10 times. What is ‘n’?

MCQ I | Q 3.23 | Page 20

Let there be n resistors R1............Rn with Rmax = max (R1......... Rn) and Rmin = min {R1..... Rn}. Show that when they are connected in parallel, the resultant resistance RP <  R min and when they are connected in series, the resultant resistance RS > Rmax. Interpret the result physically.

MCQ I | Q 3.24 | Page 20

The circuit in figure shows two cells connected in opposition to each other. Cell E1 is of emf 6V and internal resistance 2Ω; the cell E2 is of emf 4V and internal resistance 8Ω. Find the potential difference between the points A and B.

MCQ I | Q 3.25 | Page 20

Two cells of same emf E but internal resistance r1 and r2 are connected in series to an external resistor R (Figure). What should be the value of R so that the potential difference across the terminals of the first cell becomes zero.

MCQ I | Q 3.26 | Page 21

Two conductors are made of the same material and have the same length. Conductor A is a solid wire of diameter 1 mm. Conductor B is a hollow tube of outer diameter 2 mm and inner diameter 1 mm. Find the ratio of resistance RA to RB.

MCQ I | Q 3.27 | Page 21

Suppose there is a circuit consisting of only resistances and batteries and we have to double (or increase it to n-times) all voltages and all resistances. Show that currents are unaltered. Do this for circuit of Example 3.7 in the NCERT Text Book for Class XII.

MCQ I | Q 3.28 | Page 21

Two cells of voltage 10V and 2V and internal resistances 10Ω and 5Ω respectively, are connected in parallel with the positive end of 10V battery connected to negative pole of 2V battery (Figure). Find the effective voltage and effective resistance of the combination.

MCQ I | Q 3.29 | Page 21

A room has AC run for 5 hours a day at a voltage of 220V. The wiring of the room consists of Cu of 1 mm radius and a length of 10 m. Power consumption per day is 10 commercial units. What fraction of it goes in the joule heating in wires? What would happen if the wiring is made of aluminium of the same dimensions?

`[ρ_(Cu) = 1.7 xx 10_(Ωm)^-8, ρ_(Al) = 2.7 xx 10^-8 Ωm]`

MCQ I | Q 3.3 | Page 21

In an experiment with a potentiometer, VB = 10V. R is adjusted to be 50Ω (Figure). A student wanting to measure voltage E1 of a battery (approx. 8V) finds no null point possible. He then diminishes R to 10Ω and is able to locate the null point on the last (4th) segment of the potentiometer. Find the resistance of the potentiometer wire and potential drop per unit length across the wire in the second case.

MCQ I | Q 3.31 | Page 21
  1. Consider circuit in figure. How much energy is absorbed by electrons from the initial state of no current (ignore thermal motion) to the state of drift velocity?
  2. Electrons give up energy at the rate of RI2 per second to the thermal energy. What time scale would one associate with energy in problem (a)? n = no of electron/volume = 1029/m3, length of circuit = 10 cm, cross-section = A = (1mm)2

Solutions for 3: Current Electricity

MCQ I
NCERT Exemplar solutions for Physics [English] Class 12 chapter 3 - Current Electricity - Shaalaa.com

NCERT Exemplar solutions for Physics [English] Class 12 chapter 3 - Current Electricity

Shaalaa.com has the CBSE Mathematics Physics [English] Class 12 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Physics [English] Class 12 CBSE 3 (Current Electricity) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Physics [English] Class 12 chapter 3 Current Electricity are Limitations of Ohm’s Law, Electric Currents in Conductors, Conductivity and Conductance;, Current Density, Delta Star Transformation, Potential Difference and Emf of a Cell, Measurement of Internal Resistance of a Cell, Potentiometer, Metre Bridge, Wheatstone Bridge, Kirchhoff’s Rules, Combination of Cells in Series and in Parallel, Cells, Emf, Internal Resistance, Temperature Dependence of Resistance, Combination of Resistors - Series and Parallel, Resistivity of Various Materials, Drift of Electrons and the Origin of Resistivity, Ohm's Law (V = IR), Electric Current, Electrical Power, Electrical Resistivity and Conductivity, V-I Characteristics (Linear and Non-linear), Flow of Electric Charges in a Metallic Conductor.

Using NCERT Exemplar Physics [English] Class 12 solutions Current Electricity exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Physics [English] Class 12 students prefer NCERT Exemplar Textbook Solutions to score more in exams.

Get the free view of Chapter 3, Current Electricity Physics [English] Class 12 additional questions for Mathematics Physics [English] Class 12 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×