हिंदी

Bisectors of vertex angles A, B, and C of a triangle ABC intersect its circumcircle at the points D, E and F respectively. Prove that angle EDF = 90° – 12 ∠A. - Mathematics

Advertisements
Advertisements

प्रश्न

Bisectors of vertex angles A, B, and C of a triangle ABC intersect its circumcircle at the points D, E and F respectively. Prove that angle EDF  = 90° – `1/2` ∠A.

योग

उत्तर


We have,

Given that, BE is the bisector of B.

`therefore angle ABE = (angleB)/2`

`angleADE = angleABE`   ...(Angles in the same segment for chord AF)

Similarly, `angle ACF = angleADF = (angleC)/2` ...(Angle in the same segment for chord AF)

`angleD = angleADE + angleADF`

`angleD = (angleB)/2 + (angleC)/2`

= `1/2  (angleB + angleC)`

= `1/2 (180^circ - angleA)`   ...`(∴ angleA + angleB + angleC = 180^circ)`

`angleD = 90^circ - (angleA)/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Tangents and Intersecting Chords - Exercise 18 (C) [पृष्ठ २८५]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 18 Tangents and Intersecting Chords
Exercise 18 (C) | Q 10 | पृष्ठ २८५

वीडियो ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×