हिंदी

If δAbc is Isosceles with Ab = Ac and C (0, 2) is the in Circle of the δAbc Touching Bc at L, Prove that L, Bisects Bc. - Mathematics

Advertisements
Advertisements

प्रश्न

If ΔABC is isosceles with AB = AC and C (0, 2) is the in circle of the ΔABC touching BC at L, prove that L, bisects BC.

उत्तर

Given ΔABC is isosceles AB = AC

We know that

The tangents from external point to circle are equal in length

From point A, AP = AQ

But AB = AC ⇒ AP + PB = AQ + QC

⇒ PB = PC …. (i)

From B, PB = BL; ….(ii)        from C, CL = CQ …..(iii)

From (i), (ii) & (iii)

BL = CL

∴ L bisects BC.

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Circles - Exercise 8 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 8 Circles
Exercise 8 | Q 3 | पृष्ठ ३४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×