Advertisements
Advertisements
प्रश्न
The perpendicular bisectors of the sides of a triangle ABC meet at I.
Prove that: IA = IB = IC.
उत्तर
Given: A ΔABC in which AD is the perpendicular bisector of BC
BE is the perpendicular bisector of CA
CF is the perpendicular bisector of AB
AD, BE and CF meet at I
WE need to prove that
IA = IB= IC
Proof:
In ΔBID and ΔCID
BD = DC ...[ Given ]
∠BDI = ∠CDI = 90°...[ AD is the perpendicular bisector of BC]
DI = DI ...[ Common ]
∴ By the Side-Angle-Side criterion of congruence,
Δ BID ≅ Δ CID
The corresponding parts of the congruent triangles are congruent.
∴ IB = IC ...[ c.p.c.t ]
Similarly, in Δ CIE and Δ AIE
CE = AE ...[ Given ]
∠CEI = ∠AEI = 90° ...[ AD is the perpendicular bisector of BC ]
IE = IE ...[ Common ]
∴ By Side-Angel-Side Criterion of congruence,
ΔCIE ≅ ΔAIE
The corresponding parts of the congruent triangles are congruent.
∴ IC = IA ...[ c.p.c.t ]
Thus, IA = IB = IC
APPEARS IN
संबंधित प्रश्न
ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA (See the given figure). Prove that
- ΔABD ≅ ΔBAC
- BD = AC
- ∠ABD = ∠BAC.
You want to show that ΔART ≅ ΔPEN,
If it is given that AT = PN and you are to use ASA criterion, you need to have
1) ?
2) ?
Use the information in the given figure to prove:
- AB = FE
- BD = CF
In a triangle ABC, D is mid-point of BC; AD is produced up to E so that DE = AD. Prove that:
AB is parallel to EC.
A triangle ABC has ∠B = ∠C.
Prove that: The perpendiculars from the mid-point of BC to AB and AC are equal.
If AP bisects angle BAC and M is any point on AP, prove that the perpendiculars drawn from M to AB and AC are equal.
From the given diagram, in which ABCD is a parallelogram, ABL is a line segment and E is mid-point of BC.
Prove that:
(i) ΔDCE ≅ ΔLBE
(ii) AB = BL.
(iii) AL = 2DC
In the following figure, AB = EF, BC = DE and ∠B = ∠E = 90°.
Prove that AD = FC.
In a triangle, ABC, AB = BC, AD is perpendicular to side BC and CE is perpendicular to side AB.
Prove that: AD = CE.
ABC is an isosceles triangle with AB = AC and BD and CE are its two medians. Show that BD = CE.