हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Torque of a Force → F About a Point is Defined as → γ = → R × → F . Suppose → R , → F and → γ Are All Nonzero. is R × → γ | | → F Always True? is It Ever True? - Physics

Advertisements
Advertisements

प्रश्न

The torque of a force \[\overrightarrow F \] about a point is defined as \[\overrightarrow\Gamma  =  \overrightarrow r  \times  \overrightarrow F.\] Suppose \[\overrightarrow r, \overrightarrow F\] and \[\overrightarrow \Gamma\] are all nonzero. Is \[r \times  \overrightarrow\Gamma || \overrightarrow F\] always true? Is it ever true?

योग

उत्तर

\[\text{No, }\overrightarrow r  \times  \overrightarrow \tau ||  \overrightarrow \Gamma\text{ is not true.} \] 

In fact, it is never true.This is because:

\[ \overrightarrow r  \times  \overrightarrow \tau \] 

\[ =  \overrightarrow r  \times \left( \overrightarrow r  \times \overrightarrow F \right)\] 

Applying vector triple product, we get:

\[\overrightarrow r  \times \left( \overrightarrow r \times \overrightarrow F \right)\] 

\[ = \left(\overrightarrow r . \overrightarrow F \right) \overrightarrow r  - \left( \overrightarrow r . \overrightarrow r \right) \overrightarrow F \] 

\[ \because  \overrightarrow r  .  \overrightarrow r  =  r^2 \] 

\[ = \left( \overrightarrow r . \overrightarrow F \right) \overrightarrow r  {}^{-r^2} \overrightarrow F \] 

\[\text{If }\overrightarrow r  .  \overrightarrow F  = 0;   \text{ that is, }\overrightarrow r  {}^{\perp}\overrightarrow F,\text{ then} \]

\[\overrightarrow r  \times  \overrightarrow \Gamma  =  {}^{-r^2}\overrightarrow F \] 

\[\text{We know that }r^2\text{ is never negative and }\overrightarrow r  \times  \overrightarrow \Gamma  =  -r^2  \overrightarrow F \] 

This implies that both vectors may be antiparallel to each other but not parallel.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Rotational Mechanics - Short Answers [पृष्ठ १९२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 10 Rotational Mechanics
Short Answers | Q 7 | पृष्ठ १९२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s–1. The radius of the cylinder is 0.25 m. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of the angular momentum of the cylinder about its axis?


A heavy particle of mass m falls freely near the earth's surface. What is the torque acting on this particle about a point 50 cm east to the line of motion? Does this torque produce any angular acceleration in the particle?


If several forces act on a particle, the total torque on the particle may be obtained by first finding the resultant force and then taking torque of this resultant. Prove this. Is this result valid for the forces acting on different particles of a body in such a way that their lines of action intersect at a common point?


A body is in translational equilibrium under the action of coplanar forces. If the torque of these forces is zero about a point, is it necessary that it will also be zero about any other point?


When a body is weighed on an ordinary balance we demand that the arum should be horizontal if the weights on the two pans are equal. Suppose equal weights are put on the two pans, the arm is kept at an angle with the horizontal and released. Is the torque of the two weights about the middle point (point of support) zero? Is the total torque zero? If so, why does the arm rotate and finally become horizontal?


When a force of 6⋅0 N is exerted at 30° to a wrench at a distance of 8 cm from the nut it is just able to loosen the nut. What force F would be sufficient to loosen it if it acts perpendicularly to the wrench at 16 cm from the nut?


A cubical block of mass m and edge a slides down a rough inclined plane of inclination θ with a uniform speed. Find the torque of the normal force acting on the block about its centre.


A flywheel of moment of inertia 5⋅0 kg-m2 is rotated at a speed of 60 rad/s. Because of the friction at the axle it comes to rest in 5⋅0 minutes. Find (a) the average torque of the friction (b) the total work done by the friction and (c) the angular momentum of the wheel 1 minute before it stops rotating.


A 6⋅5 m long ladder rests against a vertical wall reaching a height of 6⋅0 m. A 60 kg man stands half way up the ladder.

  1. Find the torque of the force exerted by the man on the ladder about the upper end of the ladder.
  2. Assuming the weight of the ladder to be negligible as compared to the man and assuming the wall to be smooth, find the force exerted by the ground on the ladder.

A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N?


Two discs of the same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of the disc with angular velocities ω1 and ω2. They are brought in to contact face to face coinciding with the axis of rotation. The expression for loss of energy during this process is, ______


A door is hinged at one end and is free to rotate about a vertical axis (Figure). Does its weight cause any torque about this axis? Give reason for your answer.


Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω2 and ω2 are brought into contact face to face with their axes of rotation coincident.

  1. Does the law of conservation of angular momentum apply to the situation? why?
  2. Find the angular speed of the two-disc system.
  3. Calculate the loss in kinetic energy of the system in the process.
  4. Account for this loss.

A spherical shell of 1 kg mass and radius R is rolling with angular speed ω on horizontal plane (as shown in figure). The magnitude of angular momentum of the shell about the origin O is `a/3 R^2` ω. The value of a will be:


A particle of mass 'm' is moving in time 't' on a trajectory given by

`vecr  = 10alphat^2hati + 5beta(t - 5)hatj`

Where α and β are dimensional constants.

The angular momentum of the particle becomes the same as it was for t = 0 at time t = ______ seconds.


The magnitude of the torque on a particle of mass 1 kg is 2.5 Nm about the origin. If the force acting on it is 1 N, and the distance of the particle from the origin is 5 m, the angle between the force and the position vector is (in radians) ______.


A solid sphere is rotating in free space. If the radius of the sphere is increased while keeping the mass the same, which one of the following will not be affected?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×