Advertisements
Advertisements
प्रश्न
वक्र 9y2 = x3 पर वे बिन्दु जहाँ पर वक्र का अभिलम्ब अक्षों से समान अन्तःखण्ड बनाता है-
विकल्प
`(4 +- 8/3)`
`(4, - 8/3)`
`(4, +- 3/8)`
`(+- 4, 3/8)`
उत्तर
`(4 +- 8/3)`
स्पष्टीकरण-
वक्र 9y2 = x3
x के सापेक्ष अवकलन करने पर,
`18 "y" "dy"/"dx" = 3x^2`
`therefore "dy"/"dx" = (3x^2)/(18 "y") = x^2/(6 "y")`
बिन्दु (x1, y1) पर स्पर्श रेखा की प्रवणता `= x_1^2/(6"y"_1)`
∴ अभिलंब की प्रवणता = - `1/"m" = (6 "y"_1)/x_1^2`
अभिलंब अक्षों पर समान अंतः खंड बनता है।
∴ प्रवणता = ± 1
`- (6"y"_1)/x_1^2 = +- 1` या 6y1 = ± `x_1^2` ...(1)
(x1, y1) पर वक्र `9 "y"_1^2 = x_1^3` ...(2)
समीकरण (1) से y1 का मान (2) में रखने पर,
`9(x_1^2/6)^2 = x_1^3`
`=> 9 xx x_1/36 = x_1^3`
`=> x_1^4 = 4 x_1^3`
`therefore x_1 = 4`
x1 का मान समीकरण (1) में रखने पर,
`6"y"_1 = +- 16, "y"_1 = +- 16/6 = +- 8/3`
∴ बिन्दु `(4, +- 8/3)`
APPEARS IN
संबंधित प्रश्न
वक्र y = 3x4 - 4x के x = 4 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र `"y" = ("x" - 1)/("x" - 2), "x" ne 2` के x = 10 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र y = x3 - x + 1 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 2 है।
वक्र y = x3 - 3x + 2 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 3 है।
वक्र x `= "a" cos^3 theta, "y = a" sin^3 theta` के `theta = pi/4` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र y = (x - 2)2 पर एक बिंदु ज्ञात कीजिए जिस पर स्पर्श रेखा बिंदुओं (2, 0) और (4, 4) को मिलाने वाली रेखा के समांतर है।
वक्र y = x3 - 11x + 5 पर उस बिंदु को ज्ञात कीजिए जिस पर स्पर्श रेखा y = x - 11 है।
प्रवणता -1 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 1), "x" ne -1` को स्पर्श करती है।
प्रवणता 2 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 3), "x" ne 3` को स्पर्श करती है।
सिद्ध कीजिए कि वक्र y = 7x3 + 11 के उन बिंदुओं पर स्पर्श रेखाएँ समांतर हैं जहाँ x = 2 तथा x = - 2 है।
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (1, 3) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x3 के (1, 1) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x2 के (0, 0) पर
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 5y - 15x = 13 पर लंब है।
वक्र x2 + y2 - 2x - 3 = 0 के उन बिंदुओं पर स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जहाँ पर वे x-अक्ष के समांतर हैं।
परवलय y2 = 4ax के बिंदु (at2, 2at) पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए।
अतिपरवलय `"x"^2/"a"^2 - "y"^2/"b"^2 = 1` के बिंदु (x0, y0) पर स्पर्श रेखा तथा अभिलंब के समीकरण ज्ञात कीजिए।
वक्र y = `sqrt(3"x" - 2)` की उन स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा 4x - 2y + 5 = 0 के समांतर है।
वक्र y = 2x2 + 3sin x के x = 0 पर अभिलंब की प्रवणता है:
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 2x - y + 9 = 0 के समांतर है।
सिद्ध कीजिए कि वक्र x = y2 और xy = k एक-दूसरे को समकोण पर काटती हैं, यदि 8k2 = 1 है।
सिद्ध कीजिए कि वक्र x = a cos θ + a θ sin θ, y = a sin θ – a θ cos θ के किसी बिन्दु पर अभिलंब मूल बिन्दु से अचर दूरी पर है।
रेखा y = mx + 1, वक्र y2 = 4x की एक स्पर्श रेखा है यदि m का मान है-