English

वक्र 9y2 = x3 पर वे बिन्दु जहाँ पर वक्र का अभिलम्ब अक्षों से समान अन्तःखण्ड बनाता है- - Mathematics (गणित)

Advertisements
Advertisements

Question

वक्र 9y2 = x3 पर वे बिन्दु जहाँ पर वक्र का अभिलम्ब अक्षों से समान अन्तःखण्ड बनाता है-

Options

  • `(4 +- 8/3)`

  • `(4, - 8/3)`

  • `(4, +- 3/8)`

  • `(+- 4, 3/8)`

MCQ

Solution

`(4 +- 8/3)`

स्पष्टीकरण-

वक्र 9y2 = x3

x के सापेक्ष अवकलन करने पर,

`18 "y" "dy"/"dx" = 3x^2`

`therefore "dy"/"dx" = (3x^2)/(18 "y") = x^2/(6 "y")`

बिन्दु (x1, y1) पर स्पर्श रेखा की प्रवणता `= x_1^2/(6"y"_1)`

∴ अभिलंब की प्रवणता = - `1/"m" = (6 "y"_1)/x_1^2`

अभिलंब अक्षों पर समान अंतः खंड बनता है।

∴ प्रवणता = ± 1

 `- (6"y"_1)/x_1^2 = +- 1`   या  6y1 = ± `x_1^2`       ...(1)

(x1, y1) पर वक्र `9 "y"_1^2 = x_1^3`     ...(2)

समीकरण (1) से y1 का मान (2) में रखने पर,

`9(x_1^2/6)^2 = x_1^3`

`=> 9 xx x_1/36 = x_1^3`

`=> x_1^4 = 4 x_1^3`

`therefore x_1 = 4`

x1 का मान समीकरण (1) में रखने पर,

`6"y"_1 = +- 16, "y"_1 = +- 16/6 = +- 8/3`

∴ बिन्दु `(4, +- 8/3)`

shaalaa.com
स्पर्श रेखाएँ और अभिलंब
  Is there an error in this question or solution?
Chapter 6: अवकलज के अनुप्रयोग - अध्याय 6 पर विविध प्रश्नावली [Page 261]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 6 अवकलज के अनुप्रयोग
अध्याय 6 पर विविध प्रश्नावली | Q 24. | Page 261

RELATED QUESTIONS

वक्र `"y" = ("x" - 1)/("x" - 2), "x" ne 2` के x = 10 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।


वक्र y = x3 - x + 1 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 2 है।


वक्र y = x3 - 3x + 2 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 3 है।


वक्र x `= "a" cos^3 theta, "y = a" sin^3 theta` के `theta = pi/4` पर अभिलंब की प्रवणता ज्ञात कीजिए।


वक्र x `= 1 - "a" sin theta, "y = b" cos^2 theta  "के"  theta = pi/2` पर अभिलंब की प्रवणता ज्ञात कीजिए।


वक्र y = x3 - 11x + 5 पर उस बिंदु को ज्ञात कीजिए जिस पर स्पर्श रेखा y = x - 11 है।


प्रवणता -1 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 1), "x" ne -1` को स्पर्श करती है।


प्रवणता 2 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 3), "x" ne 3` को स्पर्श करती है।


प्रवणता 0 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x"^2 - 2"x" + 3)` को स्पर्श करती है।


वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ x-अक्ष के समांतर हैं।


सिद्ध कीजिए कि वक्र y = 7x3 + 11 के उन बिंदुओं पर स्पर्श रेखाएँ समांतर हैं जहाँ x = 2 तथा x = - 2 है।


वक्र y = x3 - 3x- 9x + 7 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखायें x-अक्ष के समांतर हैं।


दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:

y = x4 - 6x3 + 13x2 - 10x + 5 के (1, 3) पर


वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 5y - 15x = 13 पर लंब है।


वक्र y = x3 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के y-निर्देशांक के बराबर है।


वक्र ay2 = x3 के बिंदु (am2, am3) पर अभिलंब का समीकरण ज्ञात कीजिए।


परवलय y2 = 4ax के बिंदु (at2, 2at) पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए।


अतिपरवलय `"x"^2/"a"^2 - "y"^2/"b"^2 = 1` के बिंदु (x0, y0) पर स्पर्श रेखा तथा अभिलंब के समीकरण ज्ञात कीजिए।


वक्र y = `sqrt(3"x" - 2)` की उन स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा 4x - 2y + 5 = 0 के समांतर है।


वक्र y = 2x2 + 3sin x के x = 0 पर अभिलंब की प्रवणता है:


किस बिंदु पर y = x + 1, वक्र y2 = 4x की स्पर्श रेखा है?


वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 2x - y + 9 = 0 के समांतर है।


सिद्ध कीजिए कि वक्र x = y2 और xy = k एक-दूसरे को समकोण पर काटती हैं, यदि 8k2 = 1 है।


रेखा y = mx + 1, वक्र y2 = 4x की एक स्पर्श रेखा है यदि m का मान है-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×