Advertisements
Advertisements
Question
अतिपरवलय `"x"^2/"a"^2 - "y"^2/"b"^2 = 1` के बिंदु (x0, y0) पर स्पर्श रेखा तथा अभिलंब के समीकरण ज्ञात कीजिए।
Solution
दिया है, वक्र का समीकरण `"x"^2/"a"^2 - "y"^2/"b"^2 = 1`
दोनों पक्षों का x के सापेक्ष अवकलन करने पर,
`(2"x")/"a"^2 - (2"y")/"b"^2 "dy"/"dx" = 0`
`=> (2"y")/"b"^2 "dy"/"dx" = (2"x")/"a"^2 `
`=> "dy"/"dx" = "b"^2/"a"^2. "x"/"y"`
`therefore ("x" _0, "y"_0)` पर स्पर्श रेखा की प्रवणता `= "b"^2/"a"^2."x"_0/"y"_0`
अत स्पर्श रेखा का समीकरण y - y0 = `"b"^2/"a"^2 . "x"_0/"y"_0 ("x" - "x"_0)`
दोनों पक्षों में `"y"_0/"b"^2` से गुणा करने पर,
`("y y"_0)/"b"^2 - ("y"_0^2)/"b"^2 = ("xx"_0)/"a"^2 - "x"_0^2/"a"^2`
`=> "xx"_0/"a"^2 - ("y y"_0)/b^2 = "x"_0^2/"a"^2 - "y"_0^2/"b"^2 = 1` ...`[because "बिंदु" "x"_0, "y"_0 "वक्र" "x"^2/"a"^2 - "y"^2/"b"^2 = 1 "पर स्थित है"]`
अत: स्पर्श रेखा का समीकरण `"xx"_0/"a"^2 - "yy"_0/"b"^2 = 1`
चूँकि स्पर्श रेखा का प्रवणता m = `"b"^2/"a"^2."x"_0/"y"_0`
`therefore` अभिलंब की प्रवणता = `-1/"m" = - ("a"^2"y"_0)/("b"^2"x"_0)`
अभिलंब का समीकरण y - y0 `= ("a"^2"y"_0)/("b"^2"x"_0) ("x" - "x"_0)`
`=> ("y" - "y"_0)/("a"^2 "y"_0) = ("x" - "x"_0)/("b"^2 "x"_0)`
`therefore ("x" - "x"_0)/("b"^2 "x"_0) + ("y - y"_0)/("a"^2 "y"_0) = 0`
APPEARS IN
RELATED QUESTIONS
वक्र y = 3x4 - 4x के x = 4 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र y = x3 - 3x + 2 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 3 है।
वक्र x `= "a" cos^3 theta, "y = a" sin^3 theta` के `theta = pi/4` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र x `= 1 - "a" sin theta, "y = b" cos^2 theta "के" theta = pi/2` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र y = x3 - 11x + 5 पर उस बिंदु को ज्ञात कीजिए जिस पर स्पर्श रेखा y = x - 11 है।
प्रवणता 2 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 3), "x" ne 3` को स्पर्श करती है।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ x-अक्ष के समांतर हैं।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
सिद्ध कीजिए कि वक्र y = 7x3 + 11 के उन बिंदुओं पर स्पर्श रेखाएँ समांतर हैं जहाँ x = 2 तथा x = - 2 है।
वक्र y = x3 - 3x2 - 9x + 7 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखायें x-अक्ष के समांतर हैं।
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (0, 5) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (1, 3) पर
वक्र y = x3 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के y-निर्देशांक के बराबर है।
वक्र x2 + y2 - 2x - 3 = 0 के उन बिंदुओं पर स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जहाँ पर वे x-अक्ष के समांतर हैं।
वक्र ay2 = x3 के बिंदु (am2, am3) पर अभिलंब का समीकरण ज्ञात कीजिए।
परवलय y2 = 4ax के बिंदु (at2, 2at) पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए।
वक्र y = 2x2 + 3sin x के x = 0 पर अभिलंब की प्रवणता है:
सिद्ध कीजिए कि वक्र x = y2 और xy = k एक-दूसरे को समकोण पर काटती हैं, यदि 8k2 = 1 है।
सिद्ध कीजिए कि वक्र x = a cos θ + a θ sin θ, y = a sin θ – a θ cos θ के किसी बिन्दु पर अभिलंब मूल बिन्दु से अचर दूरी पर है।
वक्र 2y + x2 = 3 के बिन्दु (1, 1) पर अभिलम्ब का समीकरण है: