Advertisements
Advertisements
Question
वक्र y = 2x2 + 3sin x के x = 0 पर अभिलंब की प्रवणता है:
Options
3
`1/3`
-3
`-1/3`
Solution
`-1/3`
स्पष्टीकरण:
दिया है, वक्र का समीकरण y = 2x2 + 3 sin x
दोनों पक्षों का x के सापेक्ष अवकलन करने पर, `"dy"/"dx"` = 4x + 3cos x
x = 0 पर स्पर्श रेखा की प्रवणता m = `("dy"/"dx")_("x" = 0)` = 4 x 0 + 3 cos 0 = 3
`therefore` अभिलंब की प्रवणता = `- 1/"m" = - 1/3`
APPEARS IN
RELATED QUESTIONS
वक्र y = 3x4 - 4x के x = 4 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र `"y" = ("x" - 1)/("x" - 2), "x" ne 2` के x = 10 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र y = x3 - 3x + 2 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 3 है।
वक्र x `= "a" cos^3 theta, "y = a" sin^3 theta` के `theta = pi/4` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र x `= 1 - "a" sin theta, "y = b" cos^2 theta "के" theta = pi/2` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र y = (x - 2)2 पर एक बिंदु ज्ञात कीजिए जिस पर स्पर्श रेखा बिंदुओं (2, 0) और (4, 4) को मिलाने वाली रेखा के समांतर है।
वक्र y = x3 - 11x + 5 पर उस बिंदु को ज्ञात कीजिए जिस पर स्पर्श रेखा y = x - 11 है।
प्रवणता -1 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 1), "x" ne -1` को स्पर्श करती है।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ x-अक्ष के समांतर हैं।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (0, 5) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (1, 3) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x2 के (0, 0) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
x = cos t, y = sin t के t `= pi/4` पर
वक्र y = x3 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के y-निर्देशांक के बराबर है।
वक्र x2 + y2 - 2x - 3 = 0 के उन बिंदुओं पर स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जहाँ पर वे x-अक्ष के समांतर हैं।
परवलय y2 = 4ax के बिंदु (at2, 2at) पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए।
वक्र y = `sqrt(3"x" - 2)` की उन स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा 4x - 2y + 5 = 0 के समांतर है।
किस बिंदु पर y = x + 1, वक्र y2 = 4x की स्पर्श रेखा है?
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 2x - y + 9 = 0 के समांतर है।
वक्र y = x3 + 2x + 6 के उन अभिलंबो के समीकरण ज्ञात कीजिए जो रेखा x + 14y + 4 = 0 के समान्तर हैं।
सिद्ध कीजिए कि वक्र x = y2 और xy = k एक-दूसरे को समकोण पर काटती हैं, यदि 8k2 = 1 है।
सिद्ध कीजिए कि वक्र x = a cos θ + a θ sin θ, y = a sin θ – a θ cos θ के किसी बिन्दु पर अभिलंब मूल बिन्दु से अचर दूरी पर है।
रेखा y = mx + 1, वक्र y2 = 4x की एक स्पर्श रेखा है यदि m का मान है-
वक्र x2 = 4y का बिन्दु (1, 2) से होकर जाने वाला अभिलम्ब है-