Advertisements
Advertisements
Question
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 5y - 15x = 13 पर लंब है।
Solution
दिया गया वक्र
y = x2 – 2x + 7 …(i)
∴ `"dy"/"dx" = 2x - 2`
दी गई रेखा 5y – 15x = 13 की प्रवणता m1 = 155 = 3 तथा स्पर्शी रेखा की प्रवणता m2 = 2(x – 1)
∵ स्पर्शी व रेखा परस्पर लम्ब है
∴ m1 × m2 = -1
⇒ 3 × 2(x – 1)= -1
⇒ 6x – 6 = -1
⇒ x = `5/6`
x = `5/6` समीकरण (i) में रखने पर,
y = `(5/6)^2 - 2(5/6) + 7`
`= 25/36 - 10/6 + 7`
`= 217/36`
∴ बिन्दु `= (5/6, 217/36)`
अब स्पर्श रेखा की प्रवणता = 2(x - 1)
`= 2(5/6 - 1) = - 1/3`
∴ स्पर्श रेखा का समीकरण जिस पर बिन्दु `(5/6, 217/36)` है।
`"y" - 217/36 = 1/3 (x - 5/6)`
`=> (36 "y" - 217)/36 = (- (6x - 5))/3`
⇒ 36y + 12x - 227 = 0
APPEARS IN
RELATED QUESTIONS
वक्र y = x3 - x + 1 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 2 है।
वक्र y = (x - 2)2 पर एक बिंदु ज्ञात कीजिए जिस पर स्पर्श रेखा बिंदुओं (2, 0) और (4, 4) को मिलाने वाली रेखा के समांतर है।
वक्र y = x3 - 11x + 5 पर उस बिंदु को ज्ञात कीजिए जिस पर स्पर्श रेखा y = x - 11 है।
प्रवणता 2 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 3), "x" ne 3` को स्पर्श करती है।
प्रवणता 0 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x"^2 - 2"x" + 3)` को स्पर्श करती है।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ x-अक्ष के समांतर हैं।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
वक्र y = x3 - 3x2 - 9x + 7 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखायें x-अक्ष के समांतर हैं।
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (0, 5) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (1, 3) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x3 के (1, 1) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x2 के (0, 0) पर
वक्र y = x3 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के y-निर्देशांक के बराबर है।
वक्र y = 4x3 - 2x5, पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ मूलबिंदु से होकर जाती हैं।
वक्र ay2 = x3 के बिंदु (am2, am3) पर अभिलंब का समीकरण ज्ञात कीजिए।
परवलय y2 = 4ax के बिंदु (at2, 2at) पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए।
अतिपरवलय `"x"^2/"a"^2 - "y"^2/"b"^2 = 1` के बिंदु (x0, y0) पर स्पर्श रेखा तथा अभिलंब के समीकरण ज्ञात कीजिए।
वक्र y = 2x2 + 3sin x के x = 0 पर अभिलंब की प्रवणता है:
किस बिंदु पर y = x + 1, वक्र y2 = 4x की स्पर्श रेखा है?
सिद्ध कीजिए कि वक्र x = y2 और xy = k एक-दूसरे को समकोण पर काटती हैं, यदि 8k2 = 1 है।
सिद्ध कीजिए कि वक्र x = a cos θ + a θ sin θ, y = a sin θ – a θ cos θ के किसी बिन्दु पर अभिलंब मूल बिन्दु से अचर दूरी पर है।
वक्र x2 = 4y का बिन्दु (1, 2) से होकर जाने वाला अभिलम्ब है-