मराठी

A Parallelogram Abcd Has P the Mid-point of Dc and Q a Point of Ac Such that Cq = 1 4 Ac Pq Produced Meets Bc at R Prove that R is the Midpoint of Bc Pr = 12 Db - Mathematics

Advertisements
Advertisements

प्रश्न

A parallelogram ABCD has P the mid-point of Dc and Q a point of Ac such that

CQ = `[1]/[4]`AC. PQ produced meets BC at R.

Prove that
(i)R is the midpoint of BC
(ii) PR = `[1]/[2]` DB

बेरीज

उत्तर

For help, we draw the diagonal BD as shown below

The diagonal AC and BD cuts at point X.

We know that the diagonal of a parallelogram intersect equally with each other. Therefore

AX = CX and BX = DX

Given,
CQ = `[1]/[4]`AC

CQ = `[1]/[4]` x 2CX

CQ = `[1]/[2]`CX

Therefore Q is the midpoint of CX.

(i) For triangle CDX PQ || DX or PR || BD
Since for triangle CBX
Q is the midpoint of CX and QR || BX. Therefore R is the midpoint of BC

(ii) For triangle BCD
As P and R are the mid-point of CD and BC, therefore  PR = `[1]/[2]` DB

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (A) [पृष्ठ १५०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (A) | Q 9 | पृष्ठ १५०

संबंधित प्रश्‍न

In a ∆ABC, D, E and F are, respectively, the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7 cm, 8 cm and 9 cm, respectively, find the perimeter of ∆DEF.


In a ΔABC, E and F are the mid-points of AC and AB respectively. The altitude AP to BC
intersects FE at Q. Prove that AQ = QP.


In the adjacent figure, `square`ABCD is a trapezium AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB.


ABCD is a quadrilateral in which AD = BC. E, F, G and H are the mid-points of AB, BD, CD and Ac respectively. Prove that EFGH is a rhombus.


In triangle ABC, P is the mid-point of side BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R.
Prove that : (i) AP = 2AR
                   (ii) BC = 4QR


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: ∠EFG = 90°


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
If AE and DF intersect at G, and M and N are the midpoints of GB and GC respectively, prove that DMNF is a parallelogram.


E is the mid-point of the side AD of the trapezium ABCD with AB || DC. A line through E drawn parallel to AB intersect BC at F. Show that F is the mid-point of BC. [Hint: Join AC]


D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. Prove that by joining these mid-points D, E and F, the triangles ABC is divided into four congruent triangles.


Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×