Advertisements
Advertisements
प्रश्न
AB is a line seg P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B (See Fig. 10.26). Show that the line PQ is perpendicular bisector of AB.
उत्तर
Consider the figure,
We have
AB is a line segment and P,Q are points on opposite sides of AB such that
AP = BP .......(1)
AQ = BQ ........(2)
We have to prove that PQ is perpendicular bisector of AB. Now consider DPAQ and DPBQ,
We have AP = BP [∵ From (1)]
AQ = BQ [∵ From (2)]
And PQ = PQ [Common site]
⇒∠PAQ ≅ ∠PBQ ..….(3) [From SSS congruence]
Now, we can observe that Δ𝐴𝑃𝐵 𝑎𝑛𝑑 Δ𝐴𝐵𝑄 are isosceles triangles.(From 1 and 2)
⟹∠𝑃𝐴𝐵 = ∠𝑃𝐵𝐴 𝑎𝑛𝑑 ∠𝑄𝐴𝐵 = ∠𝑄𝐵𝐴
Now consider ΔPAC and , ΔPBC
C is the point of intersection of AB and PQ.
PA = PB [from (1)]
∠APC = ∠BPC [from (2)]
PC = PC [Common side]
So, from SAS congruency of triangle ΔPAC ≅ ΔPBC
⇒AC = CB and∠PCA = ∠PCB …….(4)
[∵ Corresponding parts of congruent triangles are equal] And also, ACB is line segment
⇒∠ACP + ∠BCP = 180°
But ∠ACP =∠PCB
⇒∠ACP = ∠PCB = 90° ………(5)
We have AC = CB ⇒ C is the midpoint of AB
From (4) and (5)
We can conclude that PC is the perpendicular bisector of AB
Since C is a point on the line PQ, we can say that PQ is the perpendicular bisector of AB.
APPEARS IN
संबंधित प्रश्न
If the base of an isosceles triangle is produced on both sides, prove that the exterior angles so formed are equal to each other.
Two lines AB and CD intersect at O such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at O.
If the bisector of the exterior vertical angle of a triangle be parallel to the base. Show that the triangle is isosceles.
Which of the following statements are true (T) and which are false (F) :
If the altitude from one vertex of a triangle bisects the opposite side, then the triangle may be isosceles.
Which of the following statements are true (T) and which are false (F):
If the bisector of the vertical angle of a triangle bisects the base, then the triangle may be isosceles.
Write the sum of the angles of an obtuse triangle.
If the measures of angles of a triangle are in the ratio of 3 : 4 : 5, what is the measure of the smallest angle of the triangle?
In the given figure, what is y in terms of x?
In triangles ABC and PQR, AB = AC, ∠C = ∠P and ∠B = ∠Q. The two triangles are ______.
Is it possible to construct a triangle with lengths of its sides as 8 cm, 7 cm and 4 cm? Give reason for your answer.