मराठी

An Observer, 1.5m Tall, is 28.5m Away from a Tower 30m High. Determine the Angle of Elevation of the Top of the Tower from His Eye. - Mathematics

Advertisements
Advertisements

प्रश्न

An observer, 1.5m tall, is 28.5m away from a tower 30m high. Determine the angle of elevation of the top of the tower from his eye. 

बेरीज

उत्तर

Here, ED is the height of the observer and AC is the tower. 
BE = CD = 28. 5 m 
AB = AC - BC = 30 m - 1.5 m = 28.5 m 
In ΔABE, 

`tan <"ABE" = "AB"/"BE"`

⇒ `tan <"ABE" = (28.5"m")/(28.5"m") = 1`

But, `tan 45^circ = 1`

`therefore <"ABE" = 45^circ`

Thus , the required angle of elevation is `45^circ`,

shaalaa.com
Heights and Distances - Solving 2-D Problems Involving Angles of Elevation and Depression Using Trigonometric Tables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Heights and Distances - Exercise

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 22 Heights and Distances
Exercise | Q 22

संबंधित प्रश्‍न

At a particular time, when the sun’s altitude is 30°, the length of the shadow of a vertical tower is 45 m. Calculate:

  1. the height of the tower.
  2. the length of the shadow of the same tower, when the sun’s altitude is:
  1. 45°
  2. 60°

In the figure, given below, it is given that AB is perpandiculer to BD and is of length X metres. DC = 30 m, ∠ADB = 30° and ∠ACB = 45°. Without using tables, find X.


A man standing on the bank of a river observes that the angle of elevation of a tree on the opposite bank is 60°. When he moves 50 m away from the bank, he finds the angle of elevation to be 30°.

Calculate :

  1. the width of the river;
  2. the height of the tree.

A 20 m high vertical pole and a vertical tower are on the same level ground in such a way that the angle of elevation of the top of the tower, as seen from the foot of the pole is 60° and the angle of elevation of the top of the pole, as seen from the foot of the tower is 30°. Find:

  1. the height of the tower;
  2. the horizontal distance between the pole and the tower.

The length of the shadow of a pillar is `1/sqrt(3)` times the height of the pillar . find the angle of elevation of the sun .


A vertical tow er stands on a horizontal plane and is surmounted by a flagstaff of height 7m. From a point on the plane the angle of elevation of the bottom of the flagstaff is 30° and that of the top of the ft agstaff is 45°. Find the height of the tower. 


An observer point for ships moving in the sea 500m above the sea level. The person manning this point observes the angle of depression of twc boats as 45° and 30°. Find the distance between the boats when they are on the same side of the observation point and when they are on opposite sides of the observation point. 


A man standing on a cliff observes a ship at an angle of depression of the ship is 30°, approaching the shore just beneath him. Three minutes later, the angle of depression of the ship is 60°. How soon will it reach the shore? 


If the angle of elevation of a cloud from a point h m above a lake is α, and the angle of depression of its reflection in the lake be β, prove that distance of the cloud from the point of observation is `("2h"secα)/(tanα - tanβ)`.


A round balloon of radius 'a' subtends an angle θ at the eye of the observer while the angle of elevation of its centre is Φ. Prove that the height of the centre of the balloon is a sin Φ cosec `θ/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×